【BZOJ】3302: [Shoi2005]树的双中心 && 2103: Fire 消防站 && 2447: 消防站
【题意】给定带点权树,要求选择两个点x,y,满足所有点到这两个点中较近者的距离*点权的和最小。n<=50000,h<=100。
【算法】树的重心
【题解】代码参考自:cgh_Andy
观察要求容易发现和重心的定义【所有点距离和最小】十分相似。
要把树分成两部分,于是考虑枚举割掉一条边后,在两棵树中各自找重心。
这样做得到的方案虽然不一定满足题意,但最优解一定在方案中,且不满足题意的方案一定不会比最优解小。
用树形DP求重心,总复杂度O(n^2)。
观察到最大深度<=100,可以用【往子树权和>sum/2的子树走】的方法求解。
这种做法的正确性:设当前点为重心的答案是ans,则往子树走ans=ans-sum[son]+(sum-sum[son])=ans+sum-2*sum[son],由此可知当sum[son]>sum/2时对答案有贡献。
理解做法后,关键在如何简洁的实现。
对每个点计算size,mx(最大儿子),mx2(次大儿子)。mx只记编号。
计算初始重心答案:s+=size[x],x=2~n。(这里技巧性很强,将所有size都加一次,最底端自然累计了路径数)
枚举边u-v,将边上端v到根的size修改,sum=s后修改sum(这里用sum减去路径数次的size[u],这样就是初始双中心设在1和u了)。
然后从初始双重心往下找重心即可,记得一部分sum是sum[1],另一部分sum是sum[u]。
整个过程的答案只需要:ans+=sum-2*sum[son]。
#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=;
const ll inf=1ll<<;
int fa[maxn],deep[maxn],tot,first[maxn],mx[maxn],mx2[maxn],n,w[maxn];
ll ans,size[maxn];
struct edge{int u,v,from;}e[maxn*]; void insert(int u,int v){tot++;e[tot].u=u;e[tot].v=v;e[tot].from=first[u];first[u]=tot;}
void dfs(int x,int f){
size[x]=w[x];mx[x]=mx2[x]=;
for(int i=first[x];i;i=e[i].from)if(e[i].v!=f){
deep[e[i].v]=deep[x]+;
fa[e[i].v]=x;
dfs(e[i].v,x);
size[x]+=size[e[i].v];
if(size[e[i].v]>size[mx[x]]){mx2[x]=mx[x];mx[x]=e[i].v;}
else if(size[e[i].v]>size[mx2[x]])mx2[x]=e[i].v;
}
}
int main(){
scanf("%d",&n);
int u,v;
memset(first,,sizeof(first));
tot=;
for(int i=;i<n;i++){
scanf("%d%d",&u,&v);
insert(u,v);insert(v,u);
}
for(int i=;i<=n;i++)scanf("%d",&w[i]);
dfs(,);
ll s=;ans=inf;
for(int i=;i<=n;i++)s+=size[i];
for(int k=;k<=tot;k+=){
int u=e[k].u,v=e[k].v;
if(deep[u]<deep[v])swap(u,v);
ll sum=s;
for(int x=v;x;x=fa[x])size[x]-=size[u],sum-=size[u];
int x=,y;
while(){
if(size[mx[x]]>size[mx2[x]]&&mx[x]!=u)y=mx[x];else y=mx2[x];
if(size[y]*>size[])sum+=size[]-*size[y],x=y;else break;
}
x=u;
while(){
if(size[mx[x]]*>size[u])sum+=size[u]-*size[mx[x]],x=mx[x];else break;
}
ans=min(ans,sum);
for(int x=v;x;x=fa[x])size[x]+=size[u];
}
printf("%lld",ans);
return ;
}
【BZOJ】3302: [Shoi2005]树的双中心 && 2103: Fire 消防站 && 2447: 消防站的更多相关文章
- BZOJ3302: [Shoi2005]树的双中心
BZOJ3302: [Shoi2005]树的双中心 https://lydsy.com/JudgeOnline/problem.php?id=3302 分析: 朴素算法 : 枚举边,然后在两个连通块内 ...
- 【BZOJ3302】[Shoi2005]树的双中心 DFS
[BZOJ3302][Shoi2005]树的双中心 Description Input 第一行为N,1<N<=50000,表示树的节点数目,树的节点从1到N编号.接下来N-1行,每行两个整 ...
- 题解-SHOI2005 树的双中心
SHOI2005 树的双中心 给树 \(T=(V,E)(|V|=n)\),树高为 \(h\),\(w_u(u\in V)\).求 \(x\in V,y\in V:\left(\sum_{u\in V} ...
- luogu P2726 [SHOI2005]树的双中心
传送门 强行安利->巨佬题解 如果只有一个点贡献答案,那么答案显然是这棵树的带权重心,这个是可以\(O(n)\)求的.一个\(O(n^2)\)暴力是枚举两个集合之间的分界边,然后对这两个集合分别 ...
- 【洛谷 P2726】 [SHOI2005]树的双中心(树的重心)
先考虑一个\(O(N^2)\)做法. 设选的两个点为\(x,y\),则一定可以将树分成两个集合\(A,B\),使得\(A\)集合所有点都去\(x\),\(B\)集合所有点都去\(y\),而这两个集合的 ...
- [SHOI2005]树的双中心
题目链接:Click here Solution: 首先我们要知道,选择两个点\(A,B\),必定存在一条边,割掉这条边,两个集合分别归\(A,B\)管 再结合题目,我们就得到了一个暴力的\(n^2\ ...
- bzoj 3302&2447&2103 树的双中心 树形DP
题目: 题解: bzoj 3302 == 2447 == 2103 三倍经验 首先我们考虑枚举两个中心的位置,然后统计答案. 我们发现,一定有一部分点离第一个中心更近,另一部分点离第二个中心更近 如果 ...
- BZOJ 2103/3302/2447 消防站 树的重心【DFS】【TreeDP】
2103: Fire 消防站 Time Limit: 30 Sec Memory Limit: 259 MBSubmit: 157 Solved: 116[Submit][Status][Disc ...
- BZOJ 2243 染色 | 树链剖分模板题进阶版
BZOJ 2243 染色 | 树链剖分模板题进阶版 这道题呢~就是个带区间修改的树链剖分~ 如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了. 这道题要注意的是,无论是线段树上 ...
随机推荐
- 02_Java基础_第2天(变量、运算符)_讲义
今日内容介绍 1.变量 2.运算符 01变量概述 * A: 什么是变量? * a: 变量是一个内存中的小盒子(小容器),容器是什么?生活中也有很多容器, * 例如水杯是容器,用来装载水:你家里的大衣柜 ...
- 简述Java中Http/Https请求监听方法
一.工欲善其事必先利其器 做Web开发的人总免不了与Http/Https请求打交道,很多时候我们都希望能够直观的的看到我们发送的请求参数和服务器返回的响应信息,这个时候就需要借助于某些工具啦.本文将采 ...
- ThinkPHP的调用css,js和图片的路径
按网上的说法,在根目录下建了一个Public目录,把css,js和图片放到Public目录下,然后用__PUBLIC__/...或__ROOT__/Public/...调用.但是发现无论如何改路径都无 ...
- MAC 下用 brew 搭建 PHP 开发环境
Mac下用brew搭建PHP(LNMP/LAMP)开发环境 Mac下搭建lamp开发环境很容易,有xampp和mamp现成的集成环境.但是集成环境对于经常需要自定义一些配置的开发者来说会非常麻烦,而且 ...
- BZOJ 2299 向量(裴蜀定理)
题意:给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), (-b,a), (-b,-a)这些向量,问你能不能拼出另一个向量(x ...
- bzoj4798[CEOI2015] Calvinball championship
这年头,n方跑1万的题已经不多了... 题意 bzoj4798 不知道怎么叙述这个题意... 分析 如果某个序列字典序小于给定的序列,我们不妨考虑从左到右第一个小于给定的序列的位置,并枚举这个位置的数 ...
- 【bzoj1502】[NOI2005]月下柠檬树 自适应Simpson积分
题目描述 李哲非常非常喜欢柠檬树,特别是在静静的夜晚,当天空中有一弯明月温柔地照亮地面上的景物时,他必会悠闲地坐在他亲手植下的那棵柠檬树旁,独自思索着人生的哲理.李哲是一个喜爱思考的孩子,当他看到在月 ...
- Python基础数据类型题
Python基础数据类型 题考试时间:三个小时 满分100分(80分以上包含80分及格)1,简述变量命名规范(3分) 1.必须是字母,数字,下划线的任意组合. 2.不能是数字开头 3.不能是pytho ...
- C++四种类型转化
2018-08-02 (星期四)C++类型转换:static_cast提供编译时期静态类型检测: static_cast <type-id> (expression) 1)完成 ...
- 【刷题】BZOJ 1195 [HNOI2006]最短母串
Description 给定n个字符串(S1,S2,„,Sn),要求找到一个最短的字符串T,使得这n个字符串(S1,S2,„,Sn)都是T的子串. Input 第一行是一个正整数n(n<=12) ...