【洛谷 P4360】 [CEOI2004]锯木厂选址(斜率优化)
题目链接
一开始我的\(dp\)方程列错了,其实也不能说列错了,毕竟我交上去还是把暴力的分都拿到了,只是和题解的不一样,然后搞半天没搞出来去看题解,又看不懂,对不上,原来状态设置不一样自闭了。
\(f[i]=all-sum[j]*dis[j]-(sum[i]-sum[j])*dis[i]\)
\(f[i]=all-sum[j]*dis[j]-sum[i]*dis[i]+sum[j]*dis[i]\)
\(sum[j]*dis[j]=dis[i]*sum[j]-sum[i]*dis[i]+all-f[i]\)
#include <cstdio>
const int MAXN = 20010;
#define ll long long
inline ll min(const ll a, const ll b){
return a < b ? a : b;
}
int n;
ll all, ans = 1e17, sum[MAXN], dis[MAXN];
int w[MAXN], d[MAXN];
int q[MAXN], head, tail;
inline double k(int i, int j){
return ((double)sum[i] * dis[i] - sum[j] * dis[j]) / (sum[i] - sum[j]);
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d%d", &w[i], &d[i]);
for(int i = n; i; --i)
all += w[i] * (dis[i] = dis[i + 1] + d[i]);
for(int i = 1; i <= n; ++i)
sum[i] = sum[i - 1] + w[i];
for(int i = 1; i <= n; ++i){
while(head < tail && k(q[head], q[head + 1]) > dis[i]) ++head;
int j = q[head];
ans = min(ans, all - sum[j] * dis[j] - (sum[i] - sum[j]) * dis[i]);
while(head < tail && k(q[tail - 1], q[tail]) <= k(q[tail], i)) --tail;
q[++tail] = i;
}
printf("%lld\n", ans);
return 0;
}
【洛谷 P4360】 [CEOI2004]锯木厂选址(斜率优化)的更多相关文章
- 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)
传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)
传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...
- 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)
题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...
- 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)
qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...
- [CEOI2004]锯木厂选址 斜率优化DP
斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...
- P4360 [CEOI2004]锯木厂选址
P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...
- luogu P4360 [CEOI2004]锯木厂选址
斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...
- luoguP4360 [CEOI2004]锯木厂选址
题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...
- 动态规划(斜率优化):[CEOI2004]锯木厂选址
锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...
- [BZOJ2684][CEOI2004]锯木厂选址
BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...
随机推荐
- 【leetcode】198.HouseRobber
198.HouseRobber You are a professional robber planning to rob houses along a street. Each house has ...
- ZOJ 2060 A-Fibonacci Again
https://vjudge.net/contest/67836#problem/A There are another kind of Fibonacci numbers: F(0) = 7, F( ...
- Binlog的三种模式
binlog模式分三种(row,statement,mixed) 1.Row 日志中会记录成每一行数据被修改的形式,然后在slave端再对相同的数据进行修改,只记录要修改的数据,只有value,不会有 ...
- 第91天:CSS3 属性选择器、伪类选择器和伪元素选择器
一.属性选择器 其特点是通过属性来选择元素,具体有以下5种形式: 1.E[attr] 表示存在attr属性即可: div[class] 2.E[attr=val] 表示属性值完全等于val: ...
- JavaScript常用方法(工具类的封装)
日期格式化 function formatDateTime(timeStamp) { var date = new Date(); date.setTime(timeStamp); var y = d ...
- HDU——1788 Chinese remainder theorem again
再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...
- 深入理解JVM一垃圾回收算法
我们都知道java语言与C语言最大的区别就是内存自动回收,那么JVM是怎么控制内存回收的,这篇文章将介绍JVM垃圾回收的几种算法,从而了解内存回收的基本原理. 一.stop the world 在介绍 ...
- 【BZOJ4311】向量(线段树分治,斜率优化)
[BZOJ4311]向量(线段树分治,斜率优化) 题面 BZOJ 题解 先考虑对于给定的向量集,如何求解和当前向量的最大内积. 设当前向量\((x,y)\),有两个不同的向量\((u1,v1),(u2 ...
- 洛谷 P1858 多人背包 解题报告
P1858 多人背包 题目描述 求01背包前k优解的价值和 输入输出格式 输入格式: 第一行三个数\(K\).\(V\).\(N\) 接下来每行两个数,表示体积和价值 输出格式: 前k优解的价值和 说 ...
- poj3783 Balls
Balls Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1110 Accepted: 721 Description ...