题目链接

一开始我的\(dp\)方程列错了,其实也不能说列错了,毕竟我交上去还是把暴力的分都拿到了,只是和题解的不一样,然后搞半天没搞出来去看题解,又看不懂,对不上,原来状态设置不一样自闭了。

\(f[i]=all-sum[j]*dis[j]-(sum[i]-sum[j])*dis[i]\)

\(f[i]=all-sum[j]*dis[j]-sum[i]*dis[i]+sum[j]*dis[i]\)

\(sum[j]*dis[j]=dis[i]*sum[j]-sum[i]*dis[i]+all-f[i]\)

#include <cstdio>
const int MAXN = 20010;
#define ll long long
inline ll min(const ll a, const ll b){
return a < b ? a : b;
}
int n;
ll all, ans = 1e17, sum[MAXN], dis[MAXN];
int w[MAXN], d[MAXN];
int q[MAXN], head, tail;
inline double k(int i, int j){
return ((double)sum[i] * dis[i] - sum[j] * dis[j]) / (sum[i] - sum[j]);
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d%d", &w[i], &d[i]);
for(int i = n; i; --i)
all += w[i] * (dis[i] = dis[i + 1] + d[i]);
for(int i = 1; i <= n; ++i)
sum[i] = sum[i - 1] + w[i];
for(int i = 1; i <= n; ++i){
while(head < tail && k(q[head], q[head + 1]) > dis[i]) ++head;
int j = q[head];
ans = min(ans, all - sum[j] * dis[j] - (sum[i] - sum[j]) * dis[i]);
while(head < tail && k(q[tail - 1], q[tail]) <= k(q[tail], i)) --tail;
q[++tail] = i;
}
printf("%lld\n", ans);
return 0;
}

【洛谷 P4360】 [CEOI2004]锯木厂选址(斜率优化)的更多相关文章

  1. 2018.08.28 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化dp)

    传送门 一道斜率优化dp入门题. 是这样的没错... 我们用dis[i]表示i到第三个锯木厂的距离,sum[i]表示前i棵树的总重量,w[i]为第i棵树的重量,于是发现如果令第一个锯木厂地址为i,第二 ...

  2. 洛谷P4360 [CEOI2004]锯木厂选址(斜率优化)

    传送门 我可能根本就没有学过斜率优化…… 我们设$dis[i]$表示第$i$棵树到山脚的距离,$sum[i]$表示$w$的前缀和,$tot$表示所有树运到山脚所需要的花费,$dp[i]$表示将第二个锯 ...

  3. 洛谷P4360 [CEOI2004]锯木厂选址(dp 斜率优化)

    题意 题目链接 Sol 枚举第二个球放的位置,用前缀和推一波之后发现可以斜率优化 // luogu-judger-enable-o2 #include<bits/stdc++.h> #de ...

  4. 洛谷4360[CEOI2004]锯木厂选址 (斜率优化+dp)

    qwq 我感觉这都已经不算是斜率优化\(dp\)了,感觉更像是qwq一个\(下凸壳优化\)转移递推式子. qwq 首先我们先定义几个数组 \(sw[i]\)表示\(w[i]\)的前缀和 \(val[i ...

  5. [CEOI2004]锯木厂选址 斜率优化DP

    斜率优化DP 先考虑朴素DP方程, f[i][k]代表第k个厂建在i棵树那里的最小代价,最后答案为f[n+1][3]; f[i][k]=min(f[j][k-1] + 把j+1~i的树都运到i的代价) ...

  6. P4360 [CEOI2004]锯木厂选址

    P4360 [CEOI2004]锯木厂选址 这™连dp都不是 \(f_i\)表示第二个锯木厂设在\(i\)的最小代价 枚举1号锯木厂 \(f_i=min_{0<=j<i}(\sum_{i= ...

  7. luogu P4360 [CEOI2004]锯木厂选址

    斜率优化dp板子题[迫真] 这里从下往上标记\(1-n\)号点 记\(a_i\)表示前缀\(i\)里面树木的总重量,\(l_i\)表示\(i\)到最下面的距离,\(s_i\)表示\(1\)到\(i-1 ...

  8. luoguP4360 [CEOI2004]锯木厂选址

    题目链接 luoguP4360 [CEOI2004]锯木厂选址 题解 dis:后缀和 sum:前缀和 补集转化,减去少走的,得到转移方程 dp[i] = min(tot - sumj * disj - ...

  9. 动态规划(斜率优化):[CEOI2004]锯木厂选址

    锯木场选址(CEOI2004) 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运.山脚下有 ...

  10. [BZOJ2684][CEOI2004]锯木厂选址

    BZOJ权限题! Description 从山顶上到山底下沿着一条直线种植了n棵老树.当地的政府决定把他们砍下来.为了不浪费任何一棵木材,树被砍倒后要运送到锯木厂. 木材只能按照一个方向运输:朝山下运 ...

随机推荐

  1. jQuery之css

    设置css样式/读取css值 css() 1. 得到第一个p标签的颜色 2. 设置所有p标签的文本颜色为red 3. 设置第2个p的字体颜色(#ff0011),背景(blue),宽(300px), 高 ...

  2. HDU 2154 跳舞毯

    http://acm.hdu.edu.cn/showproblem.php?pid=2154 Problem Description 由于长期缺乏运动,小黑发现自己的身材臃肿了许多,于是他想健身,更准 ...

  3. LR之Java Vuser II

    最近项目待压测的服务端协议使用的是java的Netty框架开发,而传输的业务数据使用了google protobuf进行序列化,然后通过tcp数据流与客户端通讯.这一次的压测脚本决定使用LR的java ...

  4. 最简单的Linux下apache+mysql+php安装

    转载:http://www.jb51.net/article/29843.htm ubuntu下需要先更新系统后 流程笔记: 1.打开终端,输入“sudo apt-get install apache ...

  5. webgl example1

    <!doctype html> <html lang="en"> <head> <meta charset="utf-8&quo ...

  6. Viewpoint Meta标签

    移动web Viewpoint常用得设置方式: [布局viewpoint] = [设备宽度] = [度量viewpoint] <meta name="viewport" co ...

  7. FragmentTransaction add 和 replace 区别 转

    使用 FragmentTransaction 的时候,它提供了这样两个方法,一个 add , 一个 replace . add 和 replace 影响的只是界面,而控制回退的,是事务. public ...

  8. MySQL一主两从

    服务器说明: MySQL-Master:192.168.1. MySQL-Slave1:192.168.1. MySQL-Slave2:192.168.1. 关闭防火墙,关闭selinux 统一采用源 ...

  9. Day21-自定义分页

    一. 先简单来个示例 1.1 在urls.py中增加1条,user_list from django.conf.urls import url,include from django.contrib ...

  10. Oracle Parameter使用

    string sqlStr = "update sys_case t set t.content =:CONTENT,t.property=:PROPERTY where id=:ID&qu ...