0. 前言

锁作为并发编程中的关键一环,是应该要深入掌握的。

1. 锁

1.1 示例

实现锁很简单,示例如下:

var global int

func main() {
var mu sync.Mutex
var wg sync.WaitGroup for i := 0; i < 2; i++ {
wg.Add(1)
go func(i int) {
defer wg.Done()
mu.Lock()
global++
mu.Unlock()
}(i)
} wg.Wait()
fmt.Println(global)
}

输出:

2

在 goroutine 中给全局变量 global 加锁,实现并发顺序增加变量。其中,sync.Mutex.Lock() 对变量/临界区加锁,sync.Mutex.Unlock() 对变量/临界区解锁。

1.2 sync.Mutex

我们看 sync.Mutex 互斥锁结构:

type Mutex struct {
state int32
sema uint32
}

其中,state 表示锁的状态,sema 表示信号量。

进入 sync.Mutex.Lock() 查看加锁的方法。

1.2.1 sync.Mutex.Lock()

func (m *Mutex) Lock() {
// Fast path: grab unlocked mutex.
if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
if race.Enabled {
race.Acquire(unsafe.Pointer(m))
}
return
}
// Slow path (outlined so that the fast path can be inlined)
m.lockSlow()
}

首先进入 Fast path 逻辑,原子 CAS 操作比较锁状态 m.state 和 0,如果相等则更新当前锁为已加锁状态。这里锁标志位如下:

从低(右)到高(左)的三位表示锁状态/唤醒状态/饥饿状态:

const (
mutexLocked = 1 << iota // mutex is locked
mutexWoken
mutexStarving
)

标志位初始值为 0,1 表示状态生效。

前三位之后的位数表示排队等待锁的 goroutine 数目,总共可以允许 1<<(32-3) 个 goroutine 等待锁。

这里假设有两个 goroutine G1 和 G2 抢占锁,其中 G1 通过 Fast path 获取锁,将锁的状态置为 1。这时候 G2 未获得锁,进入 Slow path

func (m *Mutex) lockSlow() {
var waitStartTime int64
starving := false
awoke := false
iter := 0
old := m.state
for {
// step1: 进入自旋
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
awoke = true
}
runtime_doSpin()
iter++
old = m.state
continue
} ...
}
}

Slow path 的代码量不大,但涉及状态转换很复杂,不容易看懂。这里拆成每个步骤,根据不同场景分析具体源码。

进入 Mutex.lockSlow(),初始化各个状态位,将当前锁状态赋给变量 old,进入 for 循环,执行第一步自旋逻辑。自旋会独占 CPU,让 CPU 空跑,但是减少了频繁切换 goroutine 带来的内存/时间消耗。如果使用的适当,会节省 CPU 开销,使用的不适当,会造成 CPU 浪费。这里进入自旋是很严苛的,通过三个条件判断能否自旋:

  1. 当前锁是普通模式才能进入自旋。
  2. runtime.sync_runtime_canSpin 需要返回 true:
    • 当前 goroutine 进入自旋的次数小于 4 次;
    • goroutine 运行在多 CPU 的机器上;
    • 当前机器上至少存在一个正在运行的处理器 P 并且处理的运行队列为空;

假设 G2 可以进入自旋,运行 runtime_doSpin()

# src/runtime/lock_futex.go
const active_spin_cnt = 30 # src/runtime/proc.go
//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit
func sync_runtime_doSpin() {
procyield(active_spin_cnt)
} # src/runtime/asm_amd64.s
TEXT runtime·procyield(SB),NOSPLIT,$0-0
MOVL cycles+0(FP), AX
again:
PAUSE
SUBL $1, AX
JNZ again
RET

自旋实际上是 CPU 执行了 30 次 PAUSE 指令。

自旋是在等待,等待锁释放的过程。假设在自旋期间 G1 已释放锁,更新 m.state 为 0。那么,在 G2 自旋逻辑中 old = m.state 将更新 old 为 0。继续往下看,for 循环中做了什么。

func (m *Mutex) lockSlow() {
...
for {
if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
...
} // step2: 更新 new,这里 new 为 0
new := old // step2: 继续更新 new
// - 如果锁为普通锁,更新锁状态为已锁。如果锁为饥饿锁,跳过饥饿锁更新。
// - 这里更新锁为 1
if old&mutexStarving == 0 {
new |= mutexLocked
} // step2:继续更新 new
// - 如果锁为已锁或饥饿的任何一种,则更新 new 的 goroutine 排队等待位
// - 这里锁为已释放,new 为 1
if old&(mutexLocked|mutexStarving) != 0 {
new += 1 << mutexWaiterShift
} // step2: 继续更新 new
// - 如果 goroutine 处于饥饿状态,并且当前锁是已锁的,更新 new 为饥饿状态
// - 这里锁为已释放,new 为 1
if starving && old&mutexLocked != 0 {
new |= mutexStarving
} // step2: 继续更新 new
// - 如果当前 goroutine 是唤醒的,重置唤醒位为 0
// - goroutine 不是唤醒的,new 为 1
if awoke {
// The goroutine has been woken from sleep,
// so we need to reset the flag in either case.
if new&mutexWoken == 0 {
throw("sync: inconsistent mutex state")
}
new &^= mutexWoken
} // step3: CAS 比较 m.state 和 old,如果一致则更新 m.state 到 new
// - 这里 m.state = 0,old = 0,new = 1
// - 更新 m.state 为 new,当前 goroutine 获得锁
if atomic.CompareAndSwapInt32(&m.state, old, new) {
// 如果更新锁之前的状态不是饥饿或已锁,表示当前 goroutine 已获得锁,跳出循环。
if old&(mutexLocked|mutexStarving) == 0 {
break // locked the mutex with CAS
}
...
}
}
}

这里将自旋后的逻辑简化为两步,更新锁的期望状态 new 和通过原子 CAS 操作更新锁。这里的场景不难,我们可以简化上述流程为如下示意图:

2. 小结

本文介绍了 Go 互斥锁的基本结构,并且给出一个抢占互斥锁的基本场景,通过场景从源码角度分析互斥锁。


Go 互斥锁 Mutex 源码分析 (一)的更多相关文章

  1. Golang 读写锁RWMutex 互斥锁Mutex 源码详解

    前言 Golang中有两种类型的锁,Mutex (互斥锁)和RWMutex(读写锁)对于这两种锁的使用这里就不多说了,本文主要侧重于从源码的角度分析这两种锁的具体实现. 引子问题 我一般喜欢带着问题去 ...

  2. concurrent(三)互斥锁ReentrantLock & 源码分析

    参考文档:Java多线程系列--“JUC锁”02之 互斥锁ReentrantLock:http://www.cnblogs.com/skywang12345/p/3496101.html Reentr ...

  3. ReentrantLock 锁释放源码分析

    ReentrantLock 锁释放源码分析: 调用的是unlock 的方法: public void unlock() { sync.release(1); } 接下来分析release() 方法: ...

  4. [转]分布式锁-RedisLockRegistry源码分析

    前言 官网的英文介绍大概如下: Starting with version 4.0, the RedisLockRegistry is available. Certain components (f ...

  5. ReentrantLock(重入锁)简单源码分析

    1.ReentrantLock是基于AQS实现的一种重入锁. 2.先介绍下公平锁/非公平锁 公平锁 公平锁是指多个线程按照申请锁的顺序来获取锁. 非公平锁 非公平锁是指多个线程获取锁的顺序并不是按照申 ...

  6. Laravel Redis分布式锁实现源码分析

    首先是锁的抽象类,定义了继承的类必须实现加锁.释放锁.返回锁拥有者的方法. namespace Illuminate\Cache; abstract class Lock implements Loc ...

  7. 【协作式原创】查漏补缺之Golang中mutex源码实现

    概览最简单版的mutex(go1.3版本) 预备知识 主要结构体 type Mutex struct { state int32 // 指代mutex锁当前的状态 sema uint32 // 信号量 ...

  8. go中sync.Mutex源码解读

    互斥锁 前言 什么是sync.Mutex 分析下源码 Lock 位运算 Unlock 总结 参考 互斥锁 前言 本次的代码是基于go version go1.13.15 darwin/amd64 什么 ...

  9. 源码分析:Semaphore之信号量

    简介 Semaphore 又名计数信号量,从概念上来讲,信号量初始并维护一定数量的许可证,使用之前先要先获得一个许可,用完之后再释放一个许可.信号量通常用于限制线程的数量来控制访问某些资源,从而达到单 ...

  10. 死磕 java集合之ConcurrentHashMap源码分析(一)

    开篇问题 (1)ConcurrentHashMap与HashMap的数据结构是否一样? (2)HashMap在多线程环境下何时会出现并发安全问题? (3)ConcurrentHashMap是怎么解决并 ...

随机推荐

  1. hive第一课:# hive-3.1.2分布式搭建文档

    hive-3.1.2分布式搭建文档 谷歌浏览器下载网址:Google Chrome – Download the fast, secure browser from Google 华为云镜像站:htt ...

  2. HTTP协议 学习:1-报文分析

    HTTP协议 学习:1-报文分析 背景 上一讲我们介绍了HTTP协议的一些 概念 ,对HTTP协议有了一个基础的认识. 正如之前学习MQTT协议一样,我们需要对HTTP的报文进行分析. HTTP 报文 ...

  3. Linux 时间 与 定时器

    背景 在学习 Linux 信号 有关知识中,提到了 alarm函数. 进程时间 (原文地址:https://www.cnblogs.com/clover-toeic/p/3845210.html) 进 ...

  4. 嵌入式HLS 案例开发手册——基于Zynq-7010/20工业开发板(2)

    目 录 2 led_flash 案例 19 2.1 HLS 工程说明 19 2.2 编译与仿真 20 2.3 IP 核测试 23 3 key_led_demo 案例 23 3.1 HLS 工程说明 2 ...

  5. OPC 数据采集 解决方案

    笔者计划从此篇博客开始,详细介绍OPC数据采集采集过程.包括常用组态软件介绍,数据接入,OPC接入过程,常用OPC数据接入与处理全流程范例,分享相关案例Demo. 因为分享的都是个人实际工作经验中的 ...

  6. 在VisualStudio中WPF应用程序在打开窗体界面设计时报错<发生了未经处理的异常>的解决方法

    在网上找了一个wpf的开源项目,在打开窗体,点击设计的时候,提示错误信息如下 System.Resources.MissingSatelliteAssemblyExceptionThe satelli ...

  7. java中的基准测试框架JMH

    JHM是openJDK开发的一个benchmark框架.它是一个Maven依赖,所以创建一个Maven项目,引入下面两个依赖: <dependency> <groupId>or ...

  8. 1. 简述一下你对 HTML 语义化的理解?

    用正确的标签做正确的事情.1.HTML 语义化让页面的内容结构化,结构更清晰,便于对浏览器.搜索引擎解析; 2.即使在没有样式 CSS 的情况下也能以一种文档格式显示,并且是容易阅读的; 3.搜索引擎 ...

  9. .NET周刊【7月第1期 2024-07-07】

    国内文章 学习.NET 8 MiniApis入门 https://www.cnblogs.com/hejiale010426/p/18280441 MiniApis是ASP.NET Core中的轻量级 ...

  10. git push origin master和git push的区别

    1.git push origin master 指定远程仓库名和分支名. 2.git push 不指定远程仓库名和分支名. 3. 这两者的区别:git push是git push origin ma ...