最近两年,我们见识了“百模大战”,领略到了大型语言模型(LLM)的风采,但它们也存在一个显著的缺陷:没有记忆。

在对话中,无法记住上下文的 LLM 常常会让用户感到困扰。本文探讨如何利用 LangChain,快速为 LLM 添加记忆能力,提升对话体验。

LangChain 是 LLM 应用开发领域的最大社区和最重要的框架。

1. LLM 固有缺陷,没有记忆

当前的 LLM 非常智能,在理解和生成自然语言方面表现优异,但是有一个显著的缺陷:没有记忆

LLM 的本质是基于统计和概率来生成文本,对于每次请求,它们都将上下文视为独立事件。这意味着当你与 LLM 进行对话时,它不会记住你之前说过的话,这就导致了 LLM 有时表现得不够智能。

这种“无记忆”属性使得 LLM 无法在长期对话中有效跟踪上下文,也无法积累历史信息。比如,当你在聊天过程中提到一个人名,后续再次提及该人时,LLM 可能会忘记你之前的描述。

本着发现问题解决问题的原则,既然没有记忆,那就给 LLM 装上记忆吧。

2. 记忆组件的原理

2.1. 没有记忆的烦恼

当我们与 LLM 聊天时,它们无法记住上下文信息,比如下图的示例:

2.2. 原理

如果将已有信息放入到 memory 中,每次跟 LLM 对话时,把已有的信息丢给 LLM,那么 LLM 就能够正确回答,见如下示例:

目前业内解决 LLM 记忆问题就是采用了类似上图的方案,即:将每次的对话记录再次丢入到 Prompt 里,这样 LLM 每次对话时,就拥有了之前的历史对话信息。

但如果每次对话,都需要自己手动将本次对话信息继续加入到history信息中,那未免太繁琐。有没有轻松一些的方式呢?有,LangChain!LangChain 对记忆组件做了高度封装,开箱即用。

2.3. 长期记忆和短期记忆

在解决 LLM 的记忆问题时,有两种记忆方案,长期记忆和短期记忆。

  • 短期记忆:基于内存的存储,容量有限,用于存储临时对话内容。
  • 长期记忆:基于硬盘或者外部数据库等方式,容量较大,用于存储需要持久的信息。

3. LangChain 让 LLM 记住上下文

LangChain 提供了灵活的内存组件工具来帮助开发者为 LLM 添加记忆能力。

3.1. 单独用 ConversationBufferMemory 做短期记忆

Langchain 提供了 ConversationBufferMemory 类,可以用来存储和管理对话。

ConversationBufferMemory 包含input变量和output变量,input代表人类输入,output代表 AI 输出。

每次往ConversationBufferMemory组件里存入对话信息时,都会存储到history的变量里。

3.2. 利用 MessagesPlaceholder 手动添加 history

from langchain.memory import ConversationBufferMemory

memory = ConversationBufferMemory(return_messages=True)
memory.load_memory_variables({}) memory.save_context({"input": "我的名字叫张三"}, {"output": "你好,张三"})
memory.load_memory_variables({}) memory.save_context({"input": "我是一名 IT 程序员"}, {"output": "好的,我知道了"})
memory.load_memory_variables({}) from langchain.prompts import ChatPromptTemplate
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder prompt = ChatPromptTemplate.from_messages(
[
("system", "你是一个乐于助人的助手。"),
MessagesPlaceholder(variable_name="history"),
("human", "{user_input}"),
]
)
chain = prompt | model user_input = "你知道我的名字吗?"
history = memory.load_memory_variables({})["history"] chain.invoke({"user_input": user_input, "history": history}) user_input = "中国最高的山是什么山?"
res = chain.invoke({"user_input": user_input, "history": history})
memory.save_context({"input": user_input}, {"output": res.content}) res = chain.invoke({"user_input": "我们聊得最后一个问题是什么?", "history": history})

执行结果如下:

3.3. 利用 ConversationChain 自动添加 history

我们利用 LangChain 的ConversationChain对话链,自动添加history的方式添加临时记忆,无需手动添加。一个实际上就是将一部分繁琐的小功能做了高度封装,这样多个链就可以组合形成易用的强大功能。这里的优势一下子就体现出来了:

from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder memory = ConversationBufferMemory(return_messages=True)
chain = ConversationChain(llm=model, memory=memory)
res = chain.invoke({"input": "你好,我的名字是张三,我是一名程序员。"})
res['response'] res = chain.invoke({"input":"南京是哪个省?"})
res['response'] res = chain.invoke({"input":"我告诉过你我的名字,是什么?,我的职业是什么?"})
res['response']

执行结果如下,可以看到利用ConversationChain对话链,可以让 LLM 快速拥有记忆:

3.4. 对话链结合 PromptTemplate 和 MessagesPlaceholder

在 Langchain 中,MessagesPlaceholder是一个占位符,用于在对话模板中动态插入上下文信息。它可以帮助我们灵活地管理对话内容,确保 LLM 能够使用最上下文来生成响应。

采用ConversationChain对话链结合PromptTemplateMessagesPlaceholder,几行代码就可以轻松让 LLM 拥有短时记忆。

prompt = ChatPromptTemplate.from_messages(
[
("system", "你是一个爱撒娇的女助手,喜欢用可爱的语气回答问题。"),
MessagesPlaceholder(variable_name="history"),
("human", "{input}"),
]
)
memory = ConversationBufferMemory(return_messages=True)
chain = ConversationChain(llm=model, memory=memory, prompt=prompt) res = chain.invoke({"input": "今天你好,我的名字是张三,我是你的老板"})
res['response'] res = chain.invoke({"input": "帮我安排一场今天晚上的高规格的晚饭"})
res['response'] res = chain.invoke({"input": "你还记得我叫什么名字吗?"})
res['response']

4. 使用长期记忆

短期记忆在会话关闭或者服务器重启后,就会丢失。如果想长期记住对话信息,只能采用长期记忆组件。

LangChain 支持多种长期记忆组件,比如ElasticsearchMongoDBRedis等,下面以Redis为例,演示如何使用长期记忆。

from langchain_community.chat_message_histories import RedisChatMessageHistory
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables.history import RunnableWithMessageHistory
from langchain_openai import ChatOpenAI model = ChatOpenAI(
model="gpt-3.5-turbo",
openai_api_key="sk-xxxxxxxxxxxxxxxxxxx",
openai_api_base="https://api.aigc369.com/v1",
) prompt = ChatPromptTemplate.from_messages(
[
("system", "你是一个擅长{ability}的助手"),
MessagesPlaceholder(variable_name="history"),
("human", "{question}"),
]
) chain = prompt | model chain_with_history = RunnableWithMessageHistory(
chain,
# 使用redis存储聊天记录
lambda session_id: RedisChatMessageHistory(
session_id, url="redis://10.22.11.110:6379/3"
),
input_messages_key="question",
history_messages_key="history",
) # 每次调用都会保存聊天记录,需要有对应的session_id
chain_with_history.invoke(
{"ability": "物理", "question": "地球到月球的距离是多少?"},
config={"configurable": {"session_id": "baily_question"}},
) chain_with_history.invoke(
{"ability": "物理", "question": "地球到太阳的距离是多少?"},
config={"configurable": {"session_id": "baily_question"}},
) chain_with_history.invoke(
{"ability": "物理", "question": "地球到他俩之间谁更近"},
config={"configurable": {"session_id": "baily_question"}},
)

LLM 的回答如下,同时关闭 session 后,直接再次提问最后一个问题,LLM 仍然能给出正确答案。

只要configurable配置的session_id能对应上,LLM 就能给出正确答案。

然后,继续查看redis存储的数据,可以看到数据在 redis 中是以 list的数据结构存储的。

5. 总结

本文介绍了 LLM 缺乏记忆功能的固有缺陷,以及记忆组件的原理,还讨论了如何利用 LangChain 给 LLM 装上记忆组件,让 LLM 能够在对话中更好地保持上下文。希望对你有帮助!

======>>>>>> 关于我 <<<<<<======

本篇完结!欢迎点赞 关注 收藏!!!

原文链接:https://mp.weixin.qq.com/s/bWZsP5CXYxsO6dARd1LtFQ

LangChain让LLM带上记忆的更多相关文章

  1. 【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)

    Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s repr ...

  2. 记得ajax中要带上AntiForgeryToken防止CSRF攻击

    经常看到在项目中ajax post数据到服务器不加防伪标记,造成CSRF攻击 在Asp.net Mvc里加入防伪标记很简单在表单中加入Html.AntiForgeryToken()即可. Html.A ...

  3. ZOJ 2314 带上下界的可行流

    对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...

  4. Excel等外部程序点击链接会带上IE信息的bug

    今天碰到一个问题,在Excel内点击链接到默认浏览器Chrome打开,奇怪的是服务端收到的Session一直对不上. 查了很久发现这个Excel到Chrome的跳转竟然带上了IE的Cookie 和 U ...

  5. 切记ajax中要带上AntiForgeryToken防止CSRF攻击

    在程序项目中经常看到ajax post数据到服务器没有加上防伪标记,导致CSRF被攻击,下面小编通过本篇文章给大家介绍ajax中要带上AntiForgeryToken防止CSRF攻击,感兴趣的朋友一起 ...

  6. echo json数据给ajax后, 需要加上exit,防止往下执行,带上其他数据,到时ajax失败

    01返回json数据给ajax后需要加上exit.返回json数据前不能有其他输出 function apply(){ if(IS_POST){$info['status'] = 1; echo js ...

  7. idhttp提交post带参数并带上cookie

    有这么一个提交连接 http://www.XXXXXX.com/test.php?p1=411328&p2=1&d1=HeroSkinList 一共有三个参数[p1]  [p2]  [ ...

  8. Django 如何让ajax的POST方法带上CSRF令牌

    问题 大家知道,在大前端领域,有一种叫做ajax的东东,即“Asynchronous Javascript And XML”(异步 JavaScript 和 XML),它被用来在不刷新页面的情况下,提 ...

  9. 利用DNSLOG获取看不到的信息(给盲注带上眼镜)

    一.前言 本文原创作者:sucppVK,本文属i春秋原创奖励计划,未经许可禁止转载! 毕业设计总算搞得差不多了,这个心累啊.这不,完成了学校的任务,赶紧回来给蛋总交作业.今天给大家分享一个姿势吧,不是 ...

  10. BZOJ2150 部落战争 【带上下界最小流】

    题目链接 BZOJ2150 题解 复习: 带上下界网络流两种写法: 不建\(T->S\)的\(INF\)的边,即不考虑源汇点,先求出此时超级源汇的最大流,即无源汇下最大的自我调整,再加入该边,求 ...

随机推荐

  1. [Go] golang 执行 Linux 系统 command

    执行系统 shell 命令示例: fileDir := "files/"out, err := exec.Command("sh", "-c" ...

  2. dotnet 提升 ToUpper 性能

    在应用软件启动过程中,客户端应用软件是对性能敏感的.比如在解析命令行参数的时候,有时候需要进行字符串处理逻辑.一般来说命令行参数都是语言文化无关的,在需要进行全大写或全小写转换过程中,采用 ToUpp ...

  3. WPF 解决 ObservableCollection 提示 Cannot change ObservableCollection during a CollectionChanged event 异常

    本文告诉大家在使用 ObservableCollection 时,抛出 InvalidOperationException 异常,提示 Cannot change ObservableCollecti ...

  4. dotnet C# 如果在构造函数抛出异常 析构函数是否会执行

    假设在某个类型的构造函数里面抛出了异常,那么这个对象的析构函数是否会执行 如下面代码 private void F1() { try { _ = new Foo(); } catch { // 忽略 ...

  5. 如何在 Linux 上部署 RabbitMQ

    如何在 Linux 上部署 RabbitMQ 目录 如何在 Linux 上部署 RabbitMQ 安装 Erlang 从预构建的二进制包安装 从源代码编译 Erlang RabbitMQ 的安装 使用 ...

  6. k8s对接Ceph实现持久化存储(16)

    一.Ceph简介 官网:https://ceph.com/en/ https://docs.ceph.com/en/latest/start/intro/ ceph 是一种开源的分布式的存储系统 包含 ...

  7. docker容器资源配额

    1.docker 容器控制CPU docker通过cgroup来控制容器使用的资源限制,可以对docker限制的资源包括cpu.内存.磁盘 1.1 指定docker容器可以使用的cpu份额 # 查看配 ...

  8. 请查收这份 6.3k star的 Java 攻城狮学习指南!

    大家好,我是 Java陈序员. 自从一入 Java 开发的坑,可谓是每天过得神清气爽(水深火热). 每天不是被项目经理赶进度,就是被测试小姐姐追着改 Bug!都没有时间好好学习(摸鱼)了! 今天给大家 ...

  9. Solution Set - 图上问题

    CF360E Link&Submission. 首先显然可以选择的边的权值一定会取端点值.事实上,第一个人经过的边选最小,第一个人不经过的边选最大,这样一定不劣.进一步,如果 \(s_1\) ...

  10. C++ 类的继承(Inheritance)

    一.继承(Inheritance) C++有一个很好的性质称为inheritance(继承),就是声明一个class(derived class),把另一个或多个class(base class)的所 ...