VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等
多模态预训练模型通过在多种模态的大规模数据上的预训练,可以综合利用来自不同模态的信息,执行各种跨模态任务。在本项目中,我们推出了VLE (Vision-Language Encoder),一种基于预训练文本和图像编码器的图像-文本多模态理解模型,可应用于如视觉问答、图像-文本检索等多模态判别任务。特别地,在对语言理解和推理能力有更强要求的视觉常识推理(VCR)任务中,VLE取得了公开模型中的最佳效果。
最近,大型语言模型(LLM)取得了巨大成功,并被用于翻译、问答、摘要等文本任务。虽然LLM是单模态模型,但它们的能力也可用于辅助多模态理解任务。借助LLM的zero-shot能力,我们设计了一种VQA+LLM方案,将大型语言模型集成到视觉问答任务中,实现了帮助视觉问答模型生成更准确和流畅的答案。
开源VLE相关资源以供学术研究参考。
在线演示地址:https://huggingface.co/spaces/hfl/VQA_VLE_LLM
中文LERT | 中英文PERT | 中文MacBERT | 中文MiniRBT | 中文ELECTRA | 中文XLNet | 中文BERT | 知识蒸馏工具TextBrewer | 模型裁剪工具TextPruner
查看更多哈工大讯飞联合实验室(HFL)发布的资源:https://github.com/iflytek/HFL-Anthology
1.模型结构
VLE模型采用双流结构,与METER模型结构类似,由两个单模态编码器(图像编码器和文本编码器)和一个跨模态融合模块构成。VLE与METER的结构上的差异在于:
- VLE使用DeBERTa-v3作为文本编码器,其性能优于METER中使用的RoBERTa-base。
- 在VLE-large中,跨模态融合模块的隐层维度增加至1024,以增加模型的容量。
- 在精调阶段,VLE引入了额外的token类型向量表示。
2.预训练
VLE使用图文对数据进行预训练。在预训练阶段,VLE采用了四个预训练任务:
- MLM (Masked Language Modeling):掩码预测任务。给定图文对,随机遮掩文本中的部分单词,训练模型还原遮掩的文本。
- ITM (Image-Text Matching):图文匹配预测任务。给定图文对,训练模型判断图像和文本是否匹配。
- MPC (Masked Patch-box Classification):遮掩Patch分类任务,给定图文对,并遮掩掉图片中包含具体对象的patch,训练模型预测被遮掩的对象种类。
- PBC (Patch-box classification):Patch分类任务。给定图文对,预测图片中的哪些patch与文本描述相关。
VLE在14M的英文图文对数据上进行了25000步的预训练,batch大小为2048。下图展示了VLE的模型结构和部分预训练任务(MLM、ITM和MPC)。
3.下游任务适配
3.1视觉问答 (VQA)
- 我们遵循标准做法,使用VQA的训练集(training set)和验证集(validation set)训练模型,在test-dev集上进行验证。我们采用模型的融合层的pooler的输出进行分类任务的训练。
3.2 视觉常识推理 (VCR)
- 我们将VCR格式化为一个类似于RACE的选择题任务,并对于每张图像中的对象,将覆盖该对象的patch的表示的平均池化值添加到融合模块之前的图像特征序列中。我们还为图像和文本中的对象添加额外的token_type_ids,以注入不同模态之间的对齐信息,提升模型的对齐性能。
3.3 模型下载
本次发布了VLE-base和VLE-large两个版本的预训练模型,模型权重为PyTorch格式,可以选择手动从 transformers模型库下载权重和配置文件,或者在代码中使用 from_pretrained(model_name) 以自动加载模型。详细方法参加模型使用。
3.4 预训练权重
| 模型 | 文本编码器 | 图像编码器 | 参数量* | MODEL_NAME | 链接 |
|---|---|---|---|---|---|
| VLE-base | DeBERTa-v3-base | CLIP-ViT-base-patch16 | 378M | hfl/vle-base | link |
| VLE-large | DeBERTa-v3-large | CLIP-ViT-large-patch14 | 930M | hfl/vle-large | link |
* : 仅计算encoder和emebddings的参数。特定任务的预测层的参数量未计入。
3.5 精调权重
| 模型 | 文本编码器 | 图像编码器 | MODEL_NAME | 链接 |
|---|---|---|---|---|
| VLE-base-for-VQA | DeBERTa-v3-base | CLIP-ViT-base-patch16 | hfl/vle-base-for-vqa | link |
| VLE-large-for-VQA | DeBERTa-v3-large | CLIP-ViT-large-patch14 | hfl/vle-large-for-vqa | link |
| VLE-base-for-VCR-q2a | DeBERTa-v3-base | CLIP-ViT-base-patch16 | hfl/vle-base-for-vcr-q2a | link |
| VLE-large-for-VCR-q2a | DeBERTa-v3-large | CLIP-ViT-large-patch14 | hfl/vle-large-for-vcr-q2a | link |
| VLE-base-for-VCR-qa2r | DeBERTa-v3-base | CLIP-ViT-base-patch16 | hfl/vle-base-for-vcr-qa2r | link |
| VLE-large-for-VCR-qa2r | DeBERTa-v3-large | CLIP-ViT-large-patch14 | hfl/vle-large-for-vcr-qa2r | link |
3.6 模型对比
在下表中,我们比较了VLE、METER以及其他多模态模型的参数量、预训练数据和下游任务效果。其中VQA展示的的是test-dev集上的效果;VCR展示的是dev集上的效果。
| 模型 | VQA | VCR (QA2R) | VCR (Q2A) | 参数量 | 预训练数据量* |
|---|---|---|---|---|---|
| CoCa | 82.3 | - | - | 2.1 B | 未知 |
| BeiT-3 | 84.2 | - | - | 1.9 B | 21M(I-T) + 14M(I) + 160G(T) |
| OFA | 82.0 | - | - | 930M | 20M(I-T) + 39M(I) + 140G(T) |
| BLIP | 78.3 | - | - | 385M | ~130M(I-T) |
| METER-base | 77.7 (76.8†‡) | 79.8§ | 77.6§ | 345M | 9M(I-T) |
| METER-Huge | 80.3 | - | - | 878M | 20M(I-T) |
| VLE-base | 77.6‡ | 83.7§ | 79.9§ | 378M | 15M(I-T) |
| VLE-large | 79.3‡ | 87.5§ | 84.3§ | 930M | 15M(I-T) |
† : 复现效果
‡ : 精调参数: lr=7e-6, batch_size={256, 512}, num_epochs=10
§ : 精调参数: lr=1e-5, batch_size=128, num_epochs=5
* : I-T: 图文对. I: 图像. T: 文本.
观察上表可以发现:
- VLE的预训练更高效:与大小相近的模型相比,VLE使用了更少的预训练数据,并在视觉问答上取得了相当甚至更好的效果。
- VLE有更强的推理能力: 特别地,在对推理能力要求更高的视觉常识推理(VCR)任务上,VLE显著地超过了具有相似结构的METER。
4.结合大模型的视觉问答
最近,随着指令微调、RLHF等技术的发展,LLM在多种文本任务中取得了巨大的成功。尽管LLM是单模态模型,但它们的能力也可用于辅助多模态理解任务。具体而言,我们提出一种VQA + LLM方案,将多模态模型与LLM集成到视觉问答任务中,从而帮助VQA模型生成更准确和流畅的答案。下图展示了系统流程。
(a) VQA: 这是使用判别模型执行VQA任务的标准方式。输入问题和图像到多模态模型中,训练模型预测正确的答案标签。
(b) VQA + LLM: 首先利用captioning模型生成图片的描述;将图片描述、问题以及VQA模型的详细预测结果拼接,组合成合适的prompt的形式送入LLM,最后要求LLM模型回复最合理的答案。
VQA+LLM生成的答案更准确,也有更高的可读性。下面是一些例子:
Demo地址(仅供学术研究):https://huggingface.co/spaces/hfl/VQA_VLE_LLM
4.1 模型使用
环境要求
- PIL
- Transformers >= 4.25
- PyTorch Lightning (仅用于运行精调脚本)
模型相关代码位于models/VLE目录下的*py文件中。因此,要使用VLE模型,仅需把models目录复制到你的项目代码目录即可。
要运行以下演示代码,请使用git clone命令下载本仓库至本地,并进入仓库的根目录。
4.2 加载VLEModel
from models.VLE import VLEModel, VLEProcessor
from PIL import Image
import torch
model_name="hfl/vle-large"
images = [Image.open('pics/dogs.png')]
text = ["There are dogs on the grass."]
model = VLEModel.from_pretrained(model_name)
vle_processor = VLEProcessor.from_pretrained(model_name)
multimodal_inputs = vle_processor(text=text,images=images, return_tensors='pt',padding=True)
#forward
vle_output = model(**multimodal_inputs)
5.推理
5.1 视觉问答 (VQA)
from models.VLE import VLEForVQA, VLEProcessor, VLEForVQAPipeline
from PIL import Image
model_name="hfl/vle-base-for-vqa"
text= "What is the color of the floor?"
image = Image.open("pics/door.png")
model = VLEForVQA.from_pretrained(model_name)
vle_processor = VLEProcessor.from_pretrained(model_name)
vqa_pipeline = VLEForVQAPipeline(model=model, device='cpu', vle_processor=vle_processor)
vqa_answers = vqa_pipeline(image=image, question=text, top_k=5)
print(f"Question: {text}. Answers: {vqa_answers}")
5.2 图文匹配(ITM)
from models.VLE import VLEForITM, VLEProcessor, VLEForITMPipeline
from PIL import Image
model_dir = 'hfl/vle-base'
itm_text = ["a photo of a cat.", "a photo of dogs."]
itm_images = Image.open("pics/dogs.png")
print("Init ITM model")
model = VLEForITM.from_pretrained(model_dir)
vle_processor = VLEProcessor.from_pretrained(model_dir)
print("init ITM pipeline")
itm_pipeline = VLEForITMPipeline(model=model, device='cpu', vle_processor=vle_processor)
itm_pred = itm_pipeline([{"image": itm_images, "text": itm_text[0]},
{"image": itm_images, "text": itm_text[1]}])
for t, pred in zip(itm_text,itm_pred):
print(t,pred)
5.3 Patch分类(PBC)
from models.VLE import VLEForPBC, VLEProcessor, VLEForPBCPipeline
from PIL import Image
model_dir = 'hfl/vle-base'
pbc_text = "pink tongues"
pbc_image = Image.open("pics/dogs.png")
print("Init PBC model")
model = VLEForPBC.from_pretrained(model_dir)
vle_processor = VLEProcessor.from_pretrained(model_dir)
print("init PBC pipeline")
pbc_pipeline = VLEForPBCPipeline(model=model, device='cpu', vle_processor=vle_processor)
pbc_pred = pbc_pipeline(image=pbc_image,text=pbc_text)
print(pbc_text)
pbc_pred['image'].save('pics/pink_tongues.png')
更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。
VLE基于预训练文本和图像编码器的图像-文本多模态理解模型:支持视觉问答、图文匹配、图片分类、常识推理等的更多相关文章
- PyTorch ImageNet 基于预训练六大常用图片分类模型的实战
微调 Torchvision 模型 在本教程中,我们将深入探讨如何对 torchvision 模型进行微调和特征提取,所有这些模型都已经预先在1000类的Imagenet数据集上训练完成.本教程将深入 ...
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
预训练语言模型的前世今生 - 从Word Embedding到BERT 本篇文章共 24619 个词,一个字一个字手码的不容易,转载请标明出处:预训练语言模型的前世今生 - 从Word Embeddi ...
- 【中文版 | 论文原文】BERT:语言理解的深度双向变换器预训练
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言 ...
- 知识增广的预训练语言模型K-BERT:将知识图谱作为训练语料
原创作者 | 杨健 论文标题: K-BERT: Enabling Language Representation with Knowledge Graph 收录会议: AAAI 论文链接: https ...
- 管正雄:基于预训练模型、智能运维的QA生成算法落地
分享嘉宾:管正雄 阿里云 高级算法工程师 出品平台:DataFunTalk 导读:面对海量的用户问题,有限的支持人员该如何高效服务好用户?智能QA生成模型给业务带来的提效以及如何高效地构建算法服务,为 ...
- Bert不完全手册8. 预训练不要停!Continue Pretraining
paper: Don't stop Pretraining: Adapt Language Models to Domains and Tasks GitHub: https://github.com ...
- DeepFaceLab 模型预训练参数Pretrain的使用!
Pretrain参数是20190501版本才加入的参数,作者加入这个参数的目的应该是提升模型的训练速度和增强适应性.具体有哪些提升,需要大家去摸索,我这里分享一下自己的使用过程. 这个参数仅针对S ...
- 【论文小综】基于外部知识的VQA(视觉问答)
我们生活在一个多模态的世界中.视觉的捕捉与理解,知识的学习与感知,语言的交流与表达,诸多方面的信息促进着我们对于世界的认知.作为多模态领域的一个典型场景,VQA旨在结合视觉的信息来回答所提出的问题 ...
- 文本分类实战(一)—— word2vec预训练词向量
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- CNN基础二:使用预训练网络提取图像特征
上一节中,我们采用了一个自定义的网络结构,从头开始训练猫狗大战分类器,最终在使用图像增强的方式下得到了82%的验证准确率.但是,想要将深度学习应用于小型图像数据集,通常不会贸然采用复杂网络并且从头开始 ...
随机推荐
- webpack 从 0 到 1 构建 vue
前端领域框架百花齐放,各种优秀框架出现(react,Vue,ag)等等框架.为了方便开发者快速开发, 开发对应的 cli 脚手架,来提高产出.然而初中级的前端工程师对项目里的 webpack 封装和配 ...
- SpringBoot 项目实战 | 瑞吉外卖 Day03
该系列将记录一份完整的实战项目的完成过程,该篇属于第三天 案例来自B站黑马程序员Java项目实战<瑞吉外卖>,请结合课程资料阅读以下内容 该篇我们将完成以下内容: 公共字段自动填充 新添分 ...
- KB专题:区间DP专辑
自从多校后心憔悴啊,发现DP还是太水了,有一场的区间DP竟然不会做,咳,果然是赤裸裸的水军. 花了几天时间写了几道区间DP的题目,大部分都是水题,然后和以前的合并起来就是KB区间DP这个8 + 1道题 ...
- Problem 1342B - Binary Period (思维)
AC代码: #include<bits/stdc++.h> using namespace std; int main() { //freopen("in.txt", ...
- 2016年第七届 蓝桥杯B组C/C++ 决赛题解
1.一步之遥 从昏迷中醒来,小明发现自己被关在X星球的废矿车里. 矿车停在平直的废弃的轨道上. 他的面前是两个按钮,分别写着"F"和"B". 小明突然记起来,这 ...
- idea调式技巧汇总
调式进阶1: https://blog.csdn.net/future_god_qr/article/details/121250865 调式进阶2:(evaluate用法:)快捷键:alt+f8 ...
- poi4版本处理word里表格中的文字换行问题和设置字体样式
开发中遇到生成word文档的需求,其中里面存在表格,发现表格中一旦存在换行生成的模板就出现各种问题,反正就是出不来想要的结果.网上找了一些方法基本都不好用,最后找到一个靠谱点的方法 XWPFParag ...
- Fedora 设置 core 文件路径
sudo vim /etc/sysctl.conf 输入 kernel.core_pattern=core.%p sudo /lib/systemd/systemd-sysctl 使修改生效 cat ...
- JavaScriptif while for switch流程控制 JS函数 内置对象
1,if else语句 2,if else if else语句 3,switch语句 4,for循环 5,while循环 6,三元运算 7,JS中的函数 8,JS中的匿名函数 9,JS中的立即执行函数 ...
- Postman调试grpc
转载请注明出处: 1.检查自己的postman是否支持 grpc,通过 File -> new -> ,出现如下图,则表示支持: 2.点击上图的grpc就会自动创建一个 grpc 的req ...