期望dp。

考虑问题的简化版:一个数列有n个数,每位有pi的概率为1,否则为0。求以每一位结尾的全为1的后缀长度的期望。

递推就好了。

l1[i]=(l1[i-1]+1)*p[i]+0*(1-p[i]);

再考虑一发:一个数列有n个数,每位有pi的概率为1,否则为0。求以每一位结尾的全为1的后缀长度的平方的期望。

平方的期望显然不等于期望的平方。但是平方的期望也是可以递推的。

l2[i]=(l2[i-1]+2*l1[i-1]+1)*p[i]+0*(1-p[i]);

l3立方同理。

再来考虑问题,第i位的答案与第i-1位的答案的差只与后缀全为1的串有关,所以我们只需要计算前一位后缀全为1的串后再加一个1的值减掉前一位的值就行了。

ans[i]=(ans[i-1]+l3[i]/p[i]-l3[i-1])*p[i]+ans[i-1]*(1-p[i]);

l3[i]/p[i]代表的其实是确定了i位为1后的i位的期望,就直接用l1l2求就好,发现顺便把上式中的l3[i-1]消了,所以不需要求l3数组(貌似三个都不需要)。

一路递推ans数组即可。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;
const int dian=;
double aa[dian],ans[dian],l1[dian],l2[dian];
int n;
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%lf",&aa[i]);
for(int i=;i<=n;i++)
l1[i]=(l1[i-]+)*aa[i];
for(int i=;i<=n;i++)
l2[i]=(l2[i-]+*l1[i-]+)*aa[i];
for(int i=;i<=n;i++)
ans[i]=ans[i-]+(*l2[i-]+*l1[i-]+)*aa[i];
printf("%.1f",ans[n]);
return ;
}

bzoj 4318 OSU!的更多相关文章

  1. BZOJ 4318: OSU! 期望DP

    4318: OSU! 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4318 Description osu 是一款群众喜闻乐见的休闲软件 ...

  2. ●BZOJ 4318 OSU!

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4318题解: 期望dp 如果我们能够得到以每个位置结尾形成的连续1的长度的相关期望,那么问题就 ...

  3. BZOJ 4318 OSU!(概率DP)

    题意 osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串.在 ...

  4. bzoj 4318 OSU! - 动态规划 - 概率与期望

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  5. BZOJ - 4318: OSU! (期望DP&Attention)

    Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1 ...

  6. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  7. bzoj 4318 OSU! —— 期望DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4318 期望DP,因为平方的期望不等于期望的平方,所以用公式递推: 第一次推错了囧,还是看这位 ...

  8. BZOJ 4318: OSU! [DP 概率]

    传送门 题意:变成了告诉每个操作的成功概率,并且得分是三次方 一样....分别维护$x,\ x^2,\ x^3$的期望就行了 注意$x^3$是我们最终求的得分,即使失败得分也要累加上之前的 #incl ...

  9. bzoj 4318 OSU 概率期望dp

    可以发现:f[i]转移到f[i+1]只和最后一串1的长度和平方有关, 因为如果新加的位置是1,贡献就是(x+1)^3-x^3=3x^2+3x+1,否则为0: 所以对于每一个位置,处理出期望的f,x和x ...

随机推荐

  1. iOS --NSAttributedString

    字符属性可以应用于 attributed string 的文本中. 文/iOS_成才录(简书作者) 原文链接:http://www.jianshu.com/p/03a741246737 著作权归作者所 ...

  2. Tableview中Dynamic Prototypes动态表的使用

    Tableview时IOS中应用非常广泛的控件,当需要动态的添加多条不同的数据时,需要用动态表来实现,下面给出一个小例子,适用于不确定Section的数目,并且每个Section中的行数也不同的情况, ...

  3. [转]HDFS中JAVA API的使用

    HDFS是一个分布式文件系统,既然是文件系统,就可以对其文件进行操作,比如说新建文件.删除文件.读取文件内容等操作.下面记录一下使用JAVA API对HDFS中的文件进行操作的过程. 对分HDFS中的 ...

  4. MySQL 更新语句技巧

    一. 多表更新 1. 数据准备 mysql> mysql> select goods_id, goods_name,goods_cate from tdb_goods; +-------- ...

  5. 【转】深入理解 Java 垃圾回收机制

    深入理解 Java 垃圾回收机制   一.垃圾回收机制的意义 Java语言中一个显著的特点就是引入了垃圾回收机制,使c++程序员最头疼的内存管理的问题迎刃而解,它使得Java程序员在编写程序的时候不再 ...

  6. C++11 - 类型推导auto关键字

    在C++11中,auto关键字被作为类型自动类型推导关键字 (1)基本用法 C++98:类型 变量名 = 初值;   int i = 10; C++11:auto 变量名 = 初值;  auto i ...

  7. WPF 提示框、确认框、确认输入框

    1.提示框 分为提示.异常.失败.成功几种类型 方法: /// <summary> /// 弹出提示 /// 标题:提示 /// </summary> /// <para ...

  8. UrlRewritingNet伪静态的使用方法与解决方案(URL重写)

    在建站初期时,我们往往需要考虑的是使用真静态还是伪静态,这对于往后的站点配置,延展性都会产生深远的影响. 我使用伪静态的唯一目的:SEO优化.毋容置疑,伪静态在对于Spider是非常有利的,因此,我更 ...

  9. 如何正确的使用jquery-ajax

    什么是ajax ajax全称Asynchronous Javascript And XML,就是异步javascript和xml ajax的作用 ajax通常用于异步加载网页内容,以及局部更新. 实际 ...

  10. 【读书笔记《Bootstrap 实战》】1.初识Bootstrap

    作为Web前端开发框架,Bootstrap为大多数标准的UI设计常见提供了用户友好.扩浏览器的解决方案. 1.下载Bootstrap 打开官方网址 http://getbootstrap.com/ 进 ...