CDQ分治(初步入门)
CDQ分治
CDQ分治,传说中是一个神犇创造的算法。
在了解这种算法之前,我们有必要了解一下一种基本的思想:分治。
分治介绍
分而治之,将原问题不断划分成若干个子问题,直到子问题规模小到足以直接解决
子问题间互相独立且原问题形式相同,递归求解这些子问题,然后将各子问题的解合并得到原问题的解
一般步骤
划分 Divide
将原问题划分成若干子问题,子问题间互相独立且与原问题形式相同
解决 Conquer
递归解决子问题(递归是彰显分治优势的工具,仅仅进行一次分治策略也许看不出优势,但递归划分到子问题规模足够小,子问题的解可用常数时间解决)
合并 Merge
将各子问题的解合并得到原问题的解
时间复杂度
直观估计
分治由以上三部分构成,整体时间复杂度则由这三部分的时间复杂度之和构成
由于递归,最终的子问题变得极为简单,以至于其时间复杂度在整个分治策略上的比重微乎其微。
CDQ分治
CDQ分治是我们处理各类问题的重要武器
它的优势在于可以顶替复杂的高级数据结构,而且常数比较小;
缺点在于必须离线操作
二维偏序问题
上面介绍了归并求逆序对的经典问题,我们由此引入二维偏序问题:
给定N个有序对(a,b),求对于每个(a,b),满足a0 < a且b0 < b的有序对(a0,b0)有多少个
在归并求逆序对的时候,实际上每个元素是用一个有序对(a,b)表示的,其中a表示数组中的位置,b表示该位置对应的值
我们求的就是“对于每个有序对(a,b),有多少个有序对(a0,b0)满足a0 < a且b0 > b”,这就是一个二维偏序问题
注意到在求逆序对的问题中,a元素是默认有序的,即我们拿到元素的时候,数组中的元素是默认从第一个到最后一个按顺序排列的,所以我们才能在合并子问题的时候忽略a元素带来的影响
因为我们在合并两个子问题的过程中,左边区间的元素一定出现在右边区间的元素之前,即左边区间的元素的a都小于右边区间元素的a
那么对于二维偏序问题,我们在拿到所有有序对(a,b)的时候,先把a元素从小到大排序
这时候问题就变成了“求顺序对”,因为a元素已经有序,可以忽略a元素带来的影响,和“求逆序对”的问题是一样的。
考虑二维偏序问题的另一种解法,用树状数组代替CDQ分治,即常用的用树状数组求顺序对
在按照a元素排序之后,我们对于整个序列从左到右扫描,每次扫描到一个有序对,求出“扫描过的有序对中,有多少个有序对的b值小于当前b值”
然而当b的值非常大的时候,空间和时间上就会吃不消,便可以用CDQ分治代替,就是我们所说的“顶替复杂的高级数据结构”
二维偏序问题的拓展
给定一个N个元素的序列a,初始值全部为0,对这个序列进行以下两种操作
操作1:格式1 x k,把位置x的元素加上k
操作2:格式为2 x y,求出区间[x,y]内所有元素的和
这是一个经典的树状数组问题
但是我们就是要没事找事,我们用CDQ分治解决它——带修改和询问的问题
我们把ta转化成一个二维偏序问题,每个操作用一个有序对(a,b)表示,其中a表示操作的时间,b表示操作的位置,时间是默认有序的,所以我们在合并子问题的过程中,就按照b从小到大的顺序合并。
首先我们把原数列和1操作都看作是修改操作
询问操作[l,r]我们拆成两个:l-1,r
因为我们询问的是一个区间和,一般的思路就是前缀和相减(我们需要具备这样的思维)
实际上我们这道题也可以这样,我们按照时间顺序进行修改
记录前缀和,当遇到l-1的标记时,我们减去sum(l-1)
遇到r标记时,询问的处理就完成了
具体流程:
按照id(插入位置)归并排序
进行左区间的修改
统计右区间的询问
需要注意的是:
在合并的时候,我们只处理左区间的修改,只统计右区间的查询因为左区间的修改一定可以影响右区间的查询这就体现出了CDQ分治的基本思想了
我们把所有操作都记录到了一个数组中,所以数组的大小至少要开到500000*3
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
using namespace std;
const int N=5000010;
int n,m,totx=0,tot=0; //totx是操作的个数,tot询问的编号
struct node{
int type,id;
ll val;
bool operator < (const node &a) const //重载运算符,优先时间排序
{
if (id!=a.id) return id<a.id;
else return type<a.type;
}
};
node A[N],B[N];
ll ans[N];
void CDQ(int L,int R)
{
if (L==R) return;
int M=(L+R)>>1;
CDQ(L,M);
CDQ(M+1,R);
int t1=L,t2=M+1;
ll sum=0;
for (int i=L;i<=R;i++)
{
if ((t1<=M&&A[t1]<A[t2])||t2>R) //只修改左边区间内的修改值
{
if (A[t1].type==1) sum+=A[t1].val; //sum是修改的总值
B[i]=A[t1++];
}
else //只统计右边区间内的查询结果
{
if (A[t2].type==3) ans[A[t2].val]+=sum;
else if (A[t2].type==2) ans[A[t2].val]-=sum;
B[i]=A[t2++];
}
}
for (int i=L;i<=R;i++) A[i]=B[i];
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++)
{
tot++;
A[tot].type=1; A[tot].id=i; //修改操作
scanf("%lld",&A[tot].val);
}
for (int i=1;i<=m;i++)
{
int t;
scanf("%d",&t);
tot++;
A[tot].type=t;
if (t==1)
scanf("%d%lld",&A[tot].id,&A[tot].val);
else
{
int l,r;
scanf("%d%d",&l,&r);
totx++;
A[tot].val=totx; A[tot].id=l-1; //询问的前一个位置
tot++; A[tot].type=3; A[tot].val=totx; A[tot].id=r; //询问的后端点
}
}
CDQ(1,tot);
for (int i=1;i<=totx;i++) printf("%lld\n",ans[i]);
return 0;
}
三维偏序问题
给定N个有序三元组(a,b,c),求对于每个三元组(a,b,c),有多少个三元组(a0,b0,c0)满足a0 < a且b0 < b且c0 < c
不用CDQ的算法,我们就不说了(太麻烦了)
类似二维偏序问题,先按照a元素从小到大排序,这样我们就可以忽略a元素的影响
然后CDQ分治,按照b元素从小到大进行归并排序
那c元素我们要怎么处理呢?
这时候比较好的方案就是借助权值树状数组,
每次从左边取出三元组(a,b,c),根据c值在树状数组中进行修改
从右边的序列中取出三元组(a,b,c)时,在树状数组中查询c值小于(a,b,c)的三元组的个数
注意,每次使用完树状数组要把树状数组清零
三维偏序问题的拓展
平面上有N个点,每个点的横纵坐标在[0,1e7]之间,有M个询问,每个询问为查询在指定矩形之内有多少个点,矩形用(x1,y1,x2,y2)的方式给出,其中(x1,y1)为左下角坐标,(x2,y2)为右上角坐标
把每个点的位置变成一个修改操作,用三元组(时间,横坐标,纵坐标)来表示,把每个查询变成二维前缀和的查询
这样对于只有位于询问的左下角的修改,才对询问有影响
操作的时间是默认有序的,分治过程中按照横坐标从小到大排序,用树状数组维护纵坐标的信息
CDQ分治(初步入门)的更多相关文章
- bzoj3262 陌上花开 cdq分治(入门)
题目传送门 思路:cdq分治处理偏序关系的模板题,主要就是学cdq分治吧,还在入门中. 代码其实也很好理解,记得树状数组操作的上限是 z的最大值,不是n的最大值,这个细节wa了好久. #include ...
- COGS 577 蝗灾 [CDQ分治入门题]
题目链接 昨天mhr神犇,讲分治时的CDQ分治的入门题. 题意: 你又一个w*w正方形的田地. 初始时没有蝗虫. 给你两个操作: 1. 1 x y z: (x,y)这个位置多了z只蝗虫. 2. 2 x ...
- 【题解】Radio stations Codeforces 762E CDQ分治
虽然说好像这题有其他做法,但是在问题转化之后,使用CDQ分治是显而易见的 并且如果CDQ打的熟练的话,码量也不算大,打的也很快,思维难度也很小 没学过CDQ分治的话,可以去看看我的另一篇博客,是CDQ ...
- CDQ分治 三维偏序
这应该是一道CDQ分治的入门题目 我们知道,二维度的偏序问题直接通过,树状数组就可以实现了,但是三维如何实现呢? 我记得以前了解过一个小故事,应该就是分治的. 一个皇帝,想给部下分配任务,但是部下太多 ...
- CDQ分治入门 + 例题 Arnooks's Defensive Line [Uva live 5871]
CDQ分治入门 简介 CDQ分治是一种特别的分治方法,它由CDQ(陈丹琦)神犇于09国家集训队作业中首次提出,因此得名.CDQ分治属于分治的一种.它一般只能处理非强制在线的问题,除此之外这个算法作为某 ...
- cdq分治入门学习 cogs 1752 Mokia nwerc 2015-2016 G 二维偏序
/* CDQ分治的对象是时间. 即对于一个时间段[L, R],我们取mid = (L + R) / 2. 分治的每层只考虑mid之前的修改对mid之后的查询的贡献,然后递归到[L,mid],(mid, ...
- cdq分治入门and持续学习orz
感觉cdq分治是一个很有趣的算法 能将很多需要套数据结构的题通过离线来做 目前的一些微小的理解 在一般情况下 就像求三维偏序xyz 就可以先对x排序 然后分治 1 cdq_x(L,M) ; 2 提取出 ...
- CDQ分治入门
前言 \(CDQ\)分治是一个神奇的算法. 它有着广泛的用途,甚至在某些题目中还能取代\(KD-Tree\).树套树等恶心的数据结构成为正解,而且常数还小得多. 不过它也有一定的缺点,如必须离线操作, ...
- caioj1097: [视频]树状数组1(快速求和计算) cdq分治入门
这题虽然是个树状数组,但是也可以用cdq分治做啊~~,这个就是一个浅显的二维偏序的应用? cdq分治和普通的分治有什么区别? 举个栗子:有4个小朋友,你请他们吃饭,假如你分治搞,就会分成很多子问题—— ...
- bzoj3262陌上花开 cdq分治入门题
Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当 ...
随机推荐
- 交换机:ToR、EoR
参考链接: 交换机:ToR.EoR ToR:(Top of Rack)接入方式就是在服务器机柜的最上面安装接入交换机. EoR:(End of Row)接入交换机集中安装在一列机柜端部的机柜内,通过水 ...
- Hugging News #0731: 新课程重磅发布、用户交流群邀请你加入、真实图像编辑方法 LEDTIS 来啦!
每一周,我们的同事都会向社区的成员们发布一些关于 Hugging Face 相关的更新,包括我们的产品和平台更新.社区活动.学习资源和内容更新.开源库和模型更新等,我们将其称之为「Hugging Ne ...
- P5020 [NOIP2018 提高组] 货币系统 题解
转化为完全背包即可. #include <iostream> #include <cstring> #include <algorithm> using names ...
- 如何提升 API-First 设计流程
一个 API-First 设计应该具有可复用性.互操作性.可修改性.用户友好性.安全性.高效性.务实性,并且重要的是,与组织目标保持一致.这些基本特征将确保 API 能够有效地为 API- First ...
- composer 的使用和常用命令大全
composer 常用命令 1.composer初始化 init 如何手动创建 composer.json 文件.实际上还有一个 init 命令可以更容易的做到这一点. 查看当前版本composer ...
- 记录一次解决数据库连接池连接泄露BUG
1 BUG现象 系统并发请求,系统停滞无法使用,所有接口都是无法与后端进行交互的状态,系统并没有宕机 2 BUG的业务流程 插入分数方法 涉及插入表ABCD 加了声明式事务 查询分数方法 涉及表ABC ...
- 8、Spring之基于注解的自动装配
8.1.场景模拟 8.1.1.UserDao接口及实现类 package org.rain.spring.dao; /** * @author liaojy * @date 2023/8/5 - 18 ...
- 《Python魔法大冒险》004 第一个魔法程序
在图书馆的一个安静的角落,魔法师和小鱼坐在一张巨大的桌子前.桌子上摆放着那台神秘的笔记本电脑. 魔法师: 小鱼,你已经学会了如何安装魔法解释器和代码编辑器.是时候开始编写你的第一个Python魔法程序 ...
- Go学习笔记3
九.错误处理 1.defer+recover机制处理异常错误 展示错误: 发现:程序中出现错误/恐慌以后,程序被中断,无法继续执行. 错误处理/捕获机制: 内置函数recover: 2.自定义错误 需 ...
- LeetCode279:完全平方数,动态规划解法超过46%,作弊解法却超过97%
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本篇概览 这是道高频面试题,值得一看 首先, ...