记录一下历程,最终没有部署成功,应该是Ubantu系统版本的问题。现在没有时间搞了,先记录一下,后续用到再填坑。

Triton demo

git clone -b r22.06 https://github.com/triton-inference-server/server.git

cd server/docs/examples

./fetch_models.sh

# 构建并启动容器1的服务
docker run --gpus=1 --rm --net=host -v /home/xbsj/gaoying/triton/triton_demo/server/docs/examples/model_repository:/models nvcr.io/nvidia/tritonserver:22.06-py3 tritonserver --model-repository=/models # 进入容器2,准备发送请求
docker run -it --rm --net=host nvcr.io/nvidia/tritonserver:22.06-py3-sdk # 在容器2中发送请求
/workspace/install/bin/image_client -m densenet_onnx -c 3 -s INCEPTION /workspace/images/mug.jpg

Triton安装及启动服务(docker)

triton容器与cuda,tensorrt对应: Release Notes :: NVIDIA Deep Learning Triton Inference Server Documentation

更详细的在这: Frameworks Support Matrix :: NVIDIA Deep Learning Frameworks Documentation

Container Version Triton Inference Server Ubuntu CUDA Toolkit TensorRT
21.07 2.12.0 20.04 NVIDIA CUDA 11.4.0 TensorRT 8.0.1.6
21.06.1 2.11.0 NVIDIA CUDA 11.3.1 TensorRT 7.2.3.4
21.06
21.05 2.10.0
21.04 2.9.0
21.03 2.8.0 NVIDIA CUDA 11.2.1 TensorRT 7.2.2.3
21.02 2.7.0 NVIDIA CUDA 11.2.0 TensorRT 7.2.2.3+cuda11.1.0.024
20.12 2.6.0 NVIDIA CUDA 11.1.1 TensorRT 7.2.2
20.11 2.5.0 18.04 NVIDIA CUDA 11.1.0 TensorRT 7.2.1
20.10 2.4.0
20.09 2.3.0 NVIDIA CUDA 11.0.3 TensorRT 7.1.3
20.08 2.2.0
20.07 1.15.0
2.1.0
NVIDIA CUDA 11.0.194
20.06 1.14.0
2.0.0
NVIDIA CUDA 11.0.167 TensorRT 7.1.2
20.03.1 1.13.0 NVIDIA CUDA 10.2.89 TensorRT 7.0.0
20.03 1.12.0
20.02
20.01
1.11.0
1.10.0
19.12
19.11
1.9.0
1.8.0
TensorRT 6.0.1
19.10 1.7.0 NVIDIA CUDA 10.1.243
19.09 1.6.0
19.08 1.5.0 TensorRT 5.1.5

1️⃣ Triton安装

拉取docker镜像,20.11是版本号, 可以去这里挑选:Triton Inference Server (Formerly TensorRT inference Server) | NVIDIA NGC

新建一个Dockerfile.triton文件,内容如下

FROM nvcr.io/nvidia/tritonserver:20.11-py3

RUN

保存并推出,运行下面命令安装triton 的 docker。先创建Dockerfile.triton文件再安装的好处是,可以把镜像命名为triton:2104,方便查看。并且如果想对triton docker镜像添加一些操作的话,可以在Dockerfile.triton文件中继续添加。

nvidia-docker build -f Dockerfile.triton -t triton:2011 .

2️⃣ 模型配置文件编写

新建一个本地目录,用于映射到docker容器

映射目录配置

.
└── model_rep # 宿主机要映射的根目录
   ├── demo1 # 模型1
   │ ├── 1 # 模型版本号
   │ │   └── model.pt # 模型
   │ ├── 2 # 模型版本号
   │ │   └── model.pt # 模型
   │ └── config.pbtxt
   └── demo2 # 模型2
   ├── 1
   │   └── model.pt
   └── config.pbtxt

模型配置文件编写

下面是一个用Netron软件打开的onnx格式的模型。我们可以看到输入,输出的名称,以及类型。我们根据这个修改配置文件中的input和output。下面是faster_rcnn_r50_trt的onnx模型文件,以及faster_rcnn_r50_trt的配置文件。

下面是对应上边模型的config.pbtxt配置文件

name: "faster_rcnn_r50_trt"               # 模型名,也是目录名
platform: "tensorrt_plan" # 模型对应的平台,参考文章下面给出的表格
max_batch_size : 8 # 一次送入模型的最大batch_size。
input [
{
name: "input"
data_type: TYPE_FP32
dims: [ 3,-1,-1 ] # 第一个维度默认是batch size,不用咱们配置。因此我们从第二个维度开始配置。
# 如果是可变维度,我们就用 -1
}
]
output [
{
name: "dets"
data_type: TYPE_FP32
dims: [-1,-1]
},
{
name: "labels"
data_type: TYPE_INT32
dims: [ -1 ]
}
] default_model_filename: "end2end.engine"

框架与platform对应表格:

框架名 platform
TensorRT tensorrt_plan
TensorFlow SavedModel tensorflow_savedmodel
TensorFlow GraphDef tensorflow_graphdef
ONNX onnxruntime_onnx
Torch pytorch_libtorch

输入输出data_type对应表格:

Model Config TensorRT TensorFlow ONNX Runtime PyTorch API NumPy
TYPE_BOOL kBOOL DT_BOOL BOOL kBool BOOL bool
TYPE_UINT8 DT_UINT8 UINT8 kByte UINT8 uint8
TYPE_UINT16 DT_UINT16 UINT16 UINT16 uint16
TYPE_UINT32 DT_UINT32 UINT32 UINT32 uint32
TYPE_UINT64 DT_UINT64 UINT64 UINT64 uint64
TYPE_INT8 kINT8 DT_INT8 INT8 kChar INT8 int8
TYPE_INT16 DT_INT16 INT16 kShort INT16 int16
TYPE_INT32 kINT32 DT_INT32 INT32 kInt INT32 int32
TYPE_INT64 DT_INT64 INT64 kLong INT64 int64
TYPE_FP16 kHALF DT_HALF FLOAT16 FP16 float16
TYPE_FP32 kFLOAT DT_FLOAT FLOAT kFloat FP32 float32
TYPE_FP64 DT_DOUBLE DOUBLE kDouble FP64 float64
TYPE_STRING DT_STRING STRING BYTES dtype(object)

3️⃣ 启动服务

启动并执行服务:

--gpus all代表启用gpus

/home/xbsj/gaoying/triton/model_rep/:/models 本地目录映射到docker目录

8000为http端口,8001为grpc端口

nvcr.io/nvidia/tritonserver:21.11-py3,版本号记得改成自己的。

docker run --gpus all -p8000:8000 -p8001:8001 -p8002:8002 -v /home/xbsj/gaoying/triton/model_rep:/model_rep -v /home/xbsj/gaoying/triton/plugin_rep:/plugin_rep --env LD_PRELOAD=/plugin_rep/libmmdeploy_tensorrt_ops.so triton:2201 tritonserver --model-repository=/model_rep
进入docker,启动服务
docker run --gpus=all --network=host --shm-size=2g -v /home/xbsj/gaoying/triton/model_rep/:/models  -it nvcr.io/nvidia/tritonserver:21.04-py3  # 进入 docker
./bin/tritonserver --model-repository=/models # 启动 triton
docker run --gpus=all --network=host -v /home/xbsj/gaoying/triton/model_rep:/opt/ml/model  -it triton:2104  # 进入 docker
./bin/tritonserver --model-repository=/models # 启动 triton

客户端测试接口

1️⃣ 命令行接口测试

测试命令是否准备好,宿主机命令行运行

curl -v localhost:8000/v2/health/ready

成功结果:

  • Trying 127.0.0.1...

  • TCP_NODELAY set

  • Connected to localhost (127.0.0.1) port 8000 (#0)

    GET /v2/health/ready HTTP/1.1

    Host: localhost:8000

    User-Agent: curl/7.58.0

    Accept: /

    < HTTP/1.1 200 OK

    < Content-Length: 0

    < Content-Type: text/plain

    <

  • Connection #0 to host localhost left intact

2️⃣ triton client 接口测试

grpc

faster rcnn r50 十个迭代用时: 1.0688064098358154

import os
import time
import numpy as np
import tritonclient.grpc as grpcclient
from PIL import Image def client_init(url="localhost:8001",
ssl=False, private_key=None, root_certificates=None, certificate_chain=None,
verbose=False):
triton_client = grpcclient.InferenceServerClient(
url=url,
verbose=verbose,
ssl=ssl,
root_certificates=root_certificates,
private_key=private_key,
certificate_chain=certificate_chain)
return triton_client def infer_faster_rcnn_r50_trt_grpc(triton_client, model_name, input='input', dets='dets', labels='labels',
compression_algorithm=None):
inputs = []
outputs = [] # 添加输入的数据
inputs.append(grpcclient.InferInput(input, [1, 3, 427, 640], "FP32")) # 给输入的数据赋值
root_dir = os.getcwd()
img_path = os.path.join(root_dir, 'demo.jpg') # 自己把一张图片命名为demo.jpg放到目录下
img = np.array(Image.open(img_path))
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0) # (1, 3, 427, 640)
inputs[0].set_data_from_numpy(img) # 添加输出的数据
outputs.append(grpcclient.InferRequestedOutput(dets))
outputs.append(grpcclient.InferRequestedOutput(labels)) results = triton_client.infer(
model_name=model_name,
inputs=inputs,
outputs=outputs,
compression_algorithm=compression_algorithm
# client_timeout=0.1
)
# print('=' * 50)
print(results)
# print('=' * 50)
# # 转化为numpy格式
# print(results.as_numpy(output0))
# print('=' * 50)
# print(results.as_numpy(output1))
# print('=' * 50) if __name__ == '__main__':
client = client_init() st = time.time()
for i in range(10):
infer_faster_rcnn_r50_trt_grpc(triton_client=client, model_name='faster_rcnn_r50_trt')
print("grpc faster rcnn r50 十个迭代用时: {}".format(time.time() - st))
http

http faster rcnn r50 十个迭代用时:1.1643376350402832

import os
import time import gevent.ssl
import numpy as np
import tritonclient.http as httpclient
from PIL import Image def client_init(url="localhost:8000",
ssl=False, key_file=None, cert_file=None, ca_certs=None, insecure=False,
verbose=False):
if ssl:
ssl_options = {}
if key_file is not None:
ssl_options['keyfile'] = key_file
if cert_file is not None:
ssl_options['certfile'] = cert_file
if ca_certs is not None:
ssl_options['ca_certs'] = ca_certs
ssl_context_factory = None
if insecure:
ssl_context_factory = gevent.ssl._create_unverified_context
triton_client = httpclient.InferenceServerClient(
url=url,
verbose=verbose,
ssl=True,
ssl_options=ssl_options,
insecure=insecure,
ssl_context_factory=ssl_context_factory)
else:
triton_client = httpclient.InferenceServerClient(
url=url, verbose=verbose)
return triton_client def infer_faster_rcnn_r50_trt_http(triton_client, model_name='faster_rcnn_r50_trt',
input='input', output0='dets', output1='labels',
request_compression_algorithm=None,
response_compression_algorithm=None):
inputs = []
outputs = [] # 添加输入的数据
inputs.append(httpclient.InferInput(input, [1, 3, 427, 640], "FP32")) # 给输入的数据赋值
root_dir = os.getcwd()
img_path = os.path.join(root_dir, 'demo.jpg') # 自己把一张图片命名为demo.jpg放到目录下
img = np.array(Image.open(img_path))
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0) # (1, 3, 427, 640)
inputs[0].set_data_from_numpy(img) # OUTPUT0、OUTPUT1为配置文件中的输出节点名称
outputs.append(httpclient.InferRequestedOutput(output0, binary_data=False))
outputs.append(httpclient.InferRequestedOutput(output1, binary_data=False)) results = triton_client.infer(
model_name=model_name,
inputs=inputs,
outputs=outputs,
request_compression_algorithm=request_compression_algorithm,
response_compression_algorithm=response_compression_algorithm)
# print('=' * 50)
print(results)
# print('=' * 50)
# # 转化为numpy格式
# print(results.as_numpy(output0))
# print('=' * 50)
# print(results.as_numpy(output1))
# print('=' * 50) if __name__ == '__main__':
triton_client = client_init()
st=time.time()
for i in range(10):
infer_faster_rcnn_r50_trt_http(triton_client)
print("http faster rcnn r50 十个迭代用时:{}".format(time.time()-st))

3️⃣ requests 接口测试

requests faster rcnn r50 十个迭代用时: 3.843385934829712

import os
import time import numpy as np
from PIL import Image
import requests def infer_demo_torch_http():
url = 'http://localhost:8000/v2/models/demo_torch/versions/1/infer'
data = {
"inputs": [{
"name": "input__0",
"shape": [2, 3],
"datatype": "INT64",
"data": [[1, 2, 3], [4, 5, 6]]
}],
"outputs": [{"name": "output__0"}, {"name": "output__1"}]
}
headers = {'Content-Type': 'application/json'}
res = requests.post(url, json=data, headers=headers).json()
print(res) def infer_demo_onnx_http():
url = 'http://localhost:8000/v2/models/demo_onnx/versions/1/infer'
data = {
"inputs": [{
"name": "INPUT0",
"shape": [8, 2],
"datatype": "FP32",
"data": [[0.1] * 2 for _ in range(8)]
}, {
"name": "INPUT1",
"shape": [8, 2],
"datatype": "INT32",
"data": [[1] * 2 for _ in range(8)]
}],
"outputs": [{"name": "OUTPUT0"}, {"name": "OUTPUT1"}]
}
headers = {'Content-Type': 'application/json'}
res = requests.post(url, json=data, headers=headers).json()
print(res) def infer_faster_rcnn_r50_onnx_http():
root_dir = os.getcwd()
img_path = os.path.join(root_dir, 'demo.jpg')
img = np.array(Image.open(img_path))
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0) # (1, 3, 427, 640)
# img = np.repeat(img, repeats=2, axis=0) # (2, 3, 427, 640)
img = img.tolist()
url = 'http://localhost:8000/v2/models/faster_rcnn_r50_onnx/versions/1/infer' data = {
"inputs": [{
"name": "input",
"shape": [1, 3, 427, 640],
"datatype": "FP32",
"data": img
}, ],
"outputs": [{"name": "dets"}, {"name": "labels"}]
}
headers = {'Content-Type': 'application/json'}
res = requests.post(url, json=data, headers=headers).json()
print(res) def infer_faster_rcnn_r50_trt_http():
root_dir = os.getcwd()
img_path = os.path.join(root_dir, 'demo.jpg')
img = np.array(Image.open(img_path))
img = img.astype(np.float32)
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0) # (1, 3, 427, 640)
img = img.tolist()
url = 'http://localhost:8000/v2/models/faster_rcnn_r50_trt/versions/1/infer' data = {
"inputs": [{
"name": "input",
"shape": [1, 3, 427, 640],
"datatype": "FP32",
"data": img
}, ],
"outputs": [{"name": "dets"}, {"name": "labels"}]
}
headers = {'Content-Type': 'application/json'}
res = requests.post(url, json=data, headers=headers).json()
print(res) if __name__ == "__main__":
print('=' * 50)
print('| Infer demo_torch')
print('_' * 20)
infer_demo_torch_http()
print('=' * 50)
print('| Infer demo_onnx')
print('_' * 20)
infer_demo_onnx_http()
print('=' * 50)
print('| Infer faster_rcnn_r50_onnx')
print('_' * 20)
infer_faster_rcnn_r50_onnx_http() print('=' * 50)
print('| Infer faster_rcnn_r50_trt')
print('_' * 20)
st = time.time()
for _ in range(10):
infer_faster_rcnn_r50_trt_http()
print("requests faster rcnn r50 十个迭代用时: {}".format(time.time() - st))
print('=' * 50)

triton压测

首先构建好我们的输入数据,input.json。

{
"inputs": [{
"name": "input__0",
"shape": [2, 3],
"datatype": "INT64",
"data": [[1, 2, 3], [4, 5, 6]]
}],
"outputs": [{"name": "output__0"}, {"name": "output__1"}]
}

安装一下用到的包

sudo apt install apache2-utils

压测命令

ab -k -c 5 -n 500 -p input.json http://localhost:8000/v2/models/demo/versions/1/infer

命令的意思是5个进程反复调用接口共500次,输入数据为input.json,模型是demo模型,版本1。

triton报错合集:

️ INVALID_ARGUMENT: getPluginCreator could not find plugin TRTBatchedNMS version 1

用mmdeploy docker转换出来的tensorrt模型,在triton docker中没法用,报以下错误:(triton的报错信息,刚开始我也不会看,那么一大堆,找不到关键是哪里报错。教大家一下,E开头的就是报错的)

E0630 01:31:22.566631 1 logging.cc:43] INVALID_ARGUMENT: getPluginCreator could not find plugin TRTBatchedNMS version 1

E0630 01:31:22.566657 1 logging.cc:43] safeDeserializationUtils.cpp (322) - Serialization Error in load: 0 (Cannot deserialize plugin since corresponding IPluginCreator not found in Plugin Registry)

E0630 01:31:22.566739 1 logging.cc:43] INVALID_STATE: std::exception

E0630 01:31:22.572629 1 logging.cc:43] INVALID_CONFIG: Deserialize the cuda engine failed.

E0630 01:31:22.587565 1 model_repository_manager.cc:1215] failed to load 'faster_rcnn_r50_tensorrt' version 1: Internal: unable to create TensorRT engine

方法一(推荐)

参考:yolo模型部署——tensorRT模型加速+triton服务器模型部署

直接运行下面命令(根据自己的自行修改)

docker run --gpus all -p8000:8000 -p8001:8001 -p8002:8002 -v /home/xbsj/gaoying/triton/model_rep:/model_rep -v /home/xbsj/gaoying/triton/plugin_rep:/plugin_rep --env LD_PRELOAD=/plugin_rep/libmmdeploy_tensorrt_ops.so triton:2104 tritonserver --model-repository=/model_rep
方法二

解决方法来源: end2end.engine to Triton · Issue #465 · open-mmlab/mmdeploy (github.com)

具体方法:(我试了,没成功。。。是我操作不对)

1️⃣ 将 /root/workspace/mmdeploy/build/lib/libmmdeploy_tensorrt_ops.so 从 mmdeploy docker 镜像复制到 triton docker 镜像中的 /opt/tritonserver/lib/

docker run --gpus=all --network=host -v /home/xbsj/gaoying/triton/model_rep:/opt/ml/model  -it triton:2104     # 宿主机命令行运行,进入triton docker容器,但不启动服务

docker ps    # 宿主机命令行运行,查看triton docker容器的id

docker cp /data/imagetd/xbsj/gaoying//mmdeploy_out/libmmdeploy_tensorrt_ops.so 7725e367f0f0:/opt/tritonserver/lib/libmmdeploy_tensorrt_ops.so      # 传输文件,宿主机->triton容器

2️⃣ 将 LD_PRELOAD=libmmdeploy_tensorrt_ops.so 附加到 /bin/serve/ 的末尾,tritonserver服务之前。

vim /bin/serve

添加上下面命令,105行

LD_PRELOAD=libmmdeploy_tensorrt_ops.so

启动服务

./bin/tritonserver --model-store=/models

️ ImportError: cannot import name 'ORTWrapper' from 'mmdeploy.backend.onnxruntime' (/data/imagetd/xbsj/gaoying/mmdeploy/mmdeploy/backend/onnxruntime/init.py)

解决方法来源:Bug using ORTwrapper · Issue #37 · open-mmlab/mmdeploy (github.com)

方法

mmdeploy/codebase/mmdet/core/post_processing/bbox_nms.py::select_nms_index 中,将return batched_dets, batched_labele 更改为 return batched_dets[:, 0:-1, :], batched_labels[:, 0:-1] 可能会修复 bug .

然后运行命令

python setup.py install

后边再进行模型转换

️ Some tactics do not have sufficient workspace memory to run. Increasing workspace size may increase performance, please check verbose output.

解决方法参考:Bug using ORTwrapper · Issue #37 · open-mmlab/mmdeploy (github.com)

Triton部署mmdeploy导出的TensorRT模型失败篇的更多相关文章

  1. 【实战】yolov8 tensorrt模型加速部署

    [实战]yolov8 tensorrt模型加速部署 TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在2023年已经更 ...

  2. Windows10下yolov8 tensorrt模型加速部署【实战】

    Windows10下yolov8 tensorrt模型加速部署[实战] TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux ...

  3. Win10下yolov8 tensorrt模型加速部署【实战】

    Win10下yolov8 tensorrt模型加速部署[实战] TensorRT-Alpha基于tensorrt+cuda c++实现模型end2end的gpu加速,支持win10.linux,在20 ...

  4. Torch 7 load saved model failed, 加载保存的模型失败

    Torch 7 load saved model failed, 加载保存的模型失败: 可以尝试下面的解决方案:  

  5. tensorflow学习笔记1:导出和加载模型

    用一个非常简单的例子学习导出和加载模型: 导出 写一个y=a*x+b的运算,然后保存graph: import tensorflow as tf from tensorflow.python.fram ...

  6. LabVIEW+OpenVINO在CPU上部署新冠肺炎检测模型实战

    前言 之前博客:[YOLOv5]LabVIEW+OpenVINO让你的YOLOv5在CPU上飞起来给大家介绍了在LabVIEW上使用openvino加速推理,在CPU上也能感受丝滑的实时物体识别.那我 ...

  7. (zhuan) 深度学习全网最全学习资料汇总之模型介绍篇

    This blog from : http://weibo.com/ttarticle/p/show?id=2309351000224077630868614681&u=5070353058& ...

  8. 总线设备驱动模型---platform篇

    总线设备驱动模型----驱动篇 http://blog.chinaunix.net/uid-27664726-id-3334923.html http://blog.chinaunix.net/uid ...

  9. suse 12 二进制部署 Kubernetets 1.19.7 - 番外篇 - 增加node节点

    文章目录 0.前景提要 1.准备node节点环境 1.0.修改配置脚本参数 1.1.配置免密 1.2.添加hosts解析 1.3.修改主机名 1.4.更新PATH变量 1.5.安装依赖包 1.6.关闭 ...

  10. 139、TensorFlow Serving 实现模型的部署(二) TextCnn文本分类模型

    昨晚终于实现了Tensorflow模型的部署 使用TensorFlow Serving 1.使用Docker 获取Tensorflow Serving的镜像,Docker在国内的需要将镜像的Repos ...

随机推荐

  1. open cv java 可以 对图片进行分析,得到数据。考试答题卡 2B铅笔涂黑嘎达 识别

    open cv java 可以 对图片进行分析,得到数据.考试答题卡 2B铅笔涂黑嘎达 识别

  2. Android Studio 下载jcenter依赖失败问题及解决

    优先国内的镜像下载即可 我用的华为和阿里云的国内镜像 google() maven { url 'https://jitpack.io' } maven { url 'http://maven.ali ...

  3. day01-1-需求分析和项目设计

    满汉楼01 1.需求分析 满汉楼项目说明 因为javaGUI不是学习的重点,这里将继续使用控制台界面来代替界面和事件处理 完成的功能: 登录 订座 点餐 结账 查看账单等功能 在实际项目中,独立完成项 ...

  4. KTL 一个支持C++14编辑公式的K线技术工具平台 - 第九版,数据分析工具。支持通达信日线数据。增强即时插件编程体现。

    K,K线,Candle蜡烛图. T,技术分析,工具平台 L,公式Language语言使用c++14,Lite小巧简易. 项目仓库:https://github.com/bbqz007/KTL 国内仓库 ...

  5. 技能get-ps抠颜色一样的图

    公司要插个小图片,从网上down下来的图片是不过是jpg的,背景不透明,这时候可以使用ps工具把这种同一颜色的内容扣下来. 操作步骤: 选择-色彩范围,然后用取样器取颜色,再调节拉条选取颜色范围,最后 ...

  6. 访问Webapp目录下面的html文件变为代码

    一.问题由来 一位朋友在学习使用Servlet做练习的时候,突然出现一个问题,他去访问自己创建的html文件时,发现返回的数据是html代码,而不是解析后的页面. 很是疑惑,自己尝试着解决这个问题,很 ...

  7. 使用nodejs从控制台读入内容

    在写算法题的时候,基本上都需要输入输出语句,在大多数练题网站上当想用js书写算法题时,发现不知道怎么输入,其实Node是提供了一个readline模块来实现此功能的 tip 笔者用过的练题网站只有le ...

  8. 大年学习linux(第一节)

    Linux学习笔记 一.常用命令 终端快键键: Ctrl+a/home 切换到命令行开始 Ctrl+e/end 切换到命令行末尾 Ctrl+i 清除屏幕内容,效果等同于clear Ctrl + u 清 ...

  9. 无力吐槽,uniapp项目外包接单碰上了这样的开发人员

    随着疫情期形式的不断变化,线上线下各个行业都受到冲击.2020年我在家歇息了近4个月:跟很多人一样这一年我失业了,那段时间真的很迷茫,年龄也已过30,加上网上各种"开发人员35岁" ...

  10. js 时间控件 日期多选

    在开发的过程中,时间总是不可避免要出现的需求,这里给大家分享我比较常用的js 时间控件和一个问题的解决方法 layDate 官方文档地址:https://www.layui.com/laydate/ ...