协方差及matlib绘制
转自http://www.cnblogs.com/chaosimple/p/3182157.html
一、统计学的基本概念
统计学里最基本的概念就是样本的均值、方差、标准差。首先,我们给定一个含有n个样本的集合,下面给出这些概念的公式描述:
均值:
标准差:
方差:
均值描述的是样本集合的中间点,它告诉我们的信息是有限的,而标准差给我们描述的是样本集合的各个样本点到均值的距离之平均。
以这两个集合为例,[0, 8, 12, 20]和[8, 9, 11, 12],两个集合的均值都是10,但显然两个集合的差别是很大的,计算两者的标准差,前者是8.3后者是1.8,显然后者较为集中,故其标准差小一些,标准差描述的就是这种“散布度”。之所以除以n-1而不是n,是因为这样能使我们以较小的样本集更好地逼近总体的标准差,即统计上所谓的“无偏估计”。而方差则仅仅是标准差的平方。
二、为什么需要协方差
标准差和方差一般是用来描述一维数据的,但现实生活中我们常常会遇到含有多维数据的数据集,最简单的是大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解更多,比如,一个男孩子的猥琐程度跟他受女孩子的欢迎程度是否存在一些联系。协方差就是这样一种用来度量两个随机变量关系的统计量,我们可以仿照方差的定义:

来度量各个维度偏离其均值的程度,协方差可以这样来定义:

协方差的结果有什么意义呢?如果结果为正值,则说明两者是正相关的(从协方差可以引出“相关系数”的定义),也就是说一个人越猥琐越受女孩欢迎。如果结果为负值, 就说明两者是负相关,越猥琐女孩子越讨厌。如果为0,则两者之间没有关系,猥琐不猥琐和女孩子喜不喜欢之间没有关联,就是统计上说的“相互独立”。
从协方差的定义上我们也可以看出一些显而易见的性质,如:


三、协方差矩阵
前面提到的猥琐和受欢迎的问题是典型的二维问题,而协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算
个协方差,那自然而然我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:

这个定义还是很容易理解的,我们可以举一个三维的例子,假设数据集有三个维度,则协方差矩阵为:

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度的方差。
四、Matlab协方差实战
必须要明确一点,协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。以下的演示将使用Matlab,为了说明计算原理,不直接调用Matlab的cov函数:
首先,随机生成一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。

图 1 使用Matlab生成样本集
根据公式,计算协方差需要计算均值,前面特别强调了,协方差矩阵是计算不同维度之间的协方差,要时刻牢记这一点。样本矩阵的每行是一个样本,每列是一个维度,因此我们要按列计算均值。为了描述方便,我们先将三个维度的数据分别赋值:

图 2 将三个维度的数据分别赋值
计算dim1与dim2,dim1与dim3,dim2与dim3的协方差:

图 3 计算三个协方差
协方差矩阵的对角线上的元素就是各个维度的方差,下面我们依次计算这些方差:

图 4 计算对角线上的方差
这样,我们就得到了计算协方差矩阵所需要的所有数据,可以调用Matlab的cov函数直接得到协方差矩阵:

图 5 使用Matlab的cov函数直接计算样本的协方差矩阵
计算的结果,和之前的数据填入矩阵后的结果完全相同。
五、总结
理解协方差矩阵的关键就在于牢记它的计算是不同维度之间的协方差,而不是不同样本之间。拿到一个样本矩阵,最先要明确的就是一行是一个样本还是一个维度,心中明确整个计算过程就会顺流而下,这么一来就不会迷茫了。
概率论的其他知识点:概率论中常用的公式 :http://www.cnblogs.com/cv-pr/p/5182388.html
常见概率分布:http://blog.csdn.net/pipisorry/article/details/39076957
http://blog.csdn.net/pipisorry/article/details/49516209
协方差及matlib绘制的更多相关文章
- 用Matplotlib绘制二维图像
唠叨几句: 近期在做数据分析,需要对数据做可视化处理,也就是画图,一般是用Matlib来做,但Matlib安装文件太大,不太想直接用它,据说其代码运行效率也很低,在网上看到可以先用Java做数据处理, ...
- 用python做自己主动化測试--绘制系统性能趋势图和科学计算
在性能測试中.我们常常须要画出CPU memory 或者IO的趋势图. 预计大学里.大多数人都学习过matlib, 领略了matlib绘图的强大. python提供了强大的绘图模块matplotlib ...
- iOS可视化动态绘制连通图
上篇博客<iOS可视化动态绘制八种排序过程>可视化了一下一些排序的过程,本篇博客就来聊聊图的东西.在之前的博客中详细的讲过图的相关内容,比如<图的物理存储结构与深搜.广搜>.当 ...
- 【AR实验室】OpenGL ES绘制相机(OpenGL ES 1.0版本)
0x00 - 前言 之前做一些移动端的AR应用以及目前看到的一些AR应用,基本上都是这样一个套路:手机背景显示现实场景,然后在该背景上进行图形学绘制.至于图形学绘制时,相机外参的解算使用的是V-SLA ...
- 使用UIBezierPath绘制图形
当需要画图时我们一般创建一个UIView子类, 重写其中的drawRect方法 再drawRect方法中利用UIBezierPath添加画图 UIBezierPath的使用方法: (1)创建一个Bez ...
- Matlab 绘制三维立体图(以地质异常体为例)
前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节 ...
- Matlab slice方法和包络法绘制三维立体图
前言:在地球物理勘探,流体空间分布等多种场景中,定位空间点P(x,y,x)的物理属性值Q,并绘制三维空间分布图,对我们洞察空间场景有十分重要的意义. 1. 三维立体图的基本要件: 全空间网格化 网格节 ...
- MATLAB中绘制质点轨迹动图并保存成GIF
工作需要在MATLAB中绘制质点轨迹并保存成GIF以便展示. 绘制质点轨迹动图可用comet和comet3命令,使用例子如下: t = 0:.01:2*pi;x = cos(2*t).*(cos(t) ...
- canvas快速绘制圆形、三角形、矩形、多边形
想看前面整理的canvas常用API的同学可以点下面: canvas学习之API整理笔记(一) canvas学习之API整理笔记(二) 本系列文章涉及的所有代码都将上传至:项目代码github地址,喜 ...
随机推荐
- (抓)ubuntu下安装mysql --- 我主要参考的文章
转:http://cycnet.blog.51cto.com/117809/812625 现在的软件越来越好安装,尤其是在ubuntu下安装软件,更是没有技巧,只需要在联网的情况下使用apt-get ...
- windows API 创建系统托盘图标
系统托盘在我们使用的程序中很普遍,下面我们来看一个很不错的例子,使用Win32 API实现,对理解系统托盘有些帮助. [cpp] view plaincopy #include <windows ...
- 根据已知值,选中selec中的选项
$("#modal").find("select[name=materialType]").find("option").each(func ...
- P2216 [HAOI2007]理想的正方形 (单调队列)
题目链接:P2216 [HAOI2007]理想的正方形 题目描述 有一个 \(a\times b\)的整数组成的矩阵,现请你从中找出一个 \(n\times n\)的正方形区域,使得该区域所有数中的最 ...
- Flink DataStream API
Data Sources 源是程序读取输入数据的位置.可以使用 StreamExecutionEnvironment.addSource(sourceFunction) 将源添加到程序.Flink 有 ...
- 剑指offer——04二维数组中的查找
题目: 数组中唯一只出现一次的数字.在一个数组中除一个数字只出现一次之外,其他数字都出现了三次.请找出那个只出现一次的数字. 题解: 如果一个数字出现三次,那么它的二进制表示的每一位(0或者1)也出现 ...
- MySQL数据库(一)—— 数据库介绍、MySQL安装、基础SQL语句
数据库介绍.MySQL安装.基础SQL语句 一.数据库介绍 1.什么是数据库 数据库即存储数据的仓库 2.为什么要用数据库 (1)用文件存储是和硬盘打交道,是IO操作,所以有效率问题 (2)管理不方便 ...
- VC++ 2010 创建高级Ribbon界面详解(4)
5.辅助控件 除了前面我们介绍的按钮,工具栏,编辑框等基本控件外,为了支持现代软件对丰厚的界面交互方式的要求,Visual Studio 2010还提供了很多其他的辅助控件,例如我们通常会用到的“上一 ...
- JHipster研究
liquibase工作原理: master.xml用来维护所有变更记录文件引用 changelog文件夹用来保存具体的变更细节 系统启动时会比较master.xml中include的file,应用差异 ...
- PCA降维-最大,最小方差解释
转自http://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html http://www.cnblogs.com/jerrylead/ ...