P4158 [SCOI2009]粉刷匠

题意

题目描述

\(windy\)有\(N\)条木板需要被粉刷。每条木板被分为\(M\)个格子。 每个格子要被刷成红色或蓝色。

\(windy\)每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。

如果\(windy\)只能粉刷\(T\)次,他最多能正确粉刷多少格子?

一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。

输入输出格式

输入格式:

第一行包含三个整数,\(N\ M\ T\)。

接下来有\(N\)行,每行一个长度为\(M\)的字符串,\(0\)表示红色,\(1\)表示蓝色。

输出格式:

包含一个整数,最多能正确粉刷的格子数。

输入输出样例

输入样例#1:

3 6 3
111111
000000
001100

输出样例#1:

16

说明

\(30\%\)的数据,满足\(1\leq N,M\leq 10,0\leq T\leq 100\)。

\(100\%\)的数据,满足\(1\leq N,M\leq 50,0\leq T\leq 2500\)。

思路

如果我们能计算出第\(i\)行涂了\(j\)次的最少错误颜色数,这题不就可以直接背包了吗?

求出这个东西,其实也是要\(dp\)的。设\(f[i][j][k][w]\)为第\(i\)行第\(j\)列, 涂了\(k\)次, 最后一块涂的颜色为\(w\)时这一行的最少错误颜色数。\(w=0\)表示没有涂色,\(w=1\)表示涂了红色,\(w=2\)表示涂了蓝色。那么就有:

for(int i=1;i<=n;i++)
{
f[i][1][0][0]=f[i][1][1][1]=f[i][1][1][2]=1;
if(ch[i][1]=='0') f[i][1][1][1]=0;
else f[i][1][1][2]=0;
for(int j=2;j<=m;j++)
for(int k=0;k<=j;k++)
{
f[i][j][k][0]=min(f[i][j-1][k][0],min(f[i][j-1][k][1],f[i][j-1][k][2]))+1;
if(ch[i][j]=='0') f[i][j][k][1]=f[i][j-1][k][1],f[i][j][k][2]=f[i][j-1][k][2]+1;
else f[i][j][k][2]=f[i][j-1][k][2],f[i][j][k][1]=f[i][j-1][k][1]+1;
if(k>0)
{
if(ch[i][j]=='0')
{
f[i][j][k][1]=min(f[i][j][k][1],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2]));
f[i][j][k][2]=min(f[i][j][k][2],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2])+1);
}
else
{
f[i][j][k][2]=min(f[i][j][k][2],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2]));
f[i][j][k][1]=min(f[i][j][k][1],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2])+1);
}
}
}

然后背包就好啦。背包的代码见下面。

AC代码

#include<bits/stdc++.h>
using namespace std;
int n,m,t,f[55][55][55][3],g[55][55],dp[55][2505];
///0:NULL, 1:RED(0), 2:BLUE(1)
///f[i][j][k][w]: 第i行第j列, 涂了k次, 最后一块为w
char ch[55][55];
int main()
{
cin>>n>>m>>t;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>ch[i][j];
memset(f,0x3f,sizeof f);
for(int i=1;i<=n;i++)
{
f[i][1][0][0]=f[i][1][1][1]=f[i][1][1][2]=1;
if(ch[i][1]=='0') f[i][1][1][1]=0;
else f[i][1][1][2]=0;
for(int j=2;j<=m;j++)
for(int k=0;k<=j;k++)
{
f[i][j][k][0]=min(f[i][j-1][k][0],min(f[i][j-1][k][1],f[i][j-1][k][2]))+1;
if(ch[i][j]=='0') f[i][j][k][1]=f[i][j-1][k][1],f[i][j][k][2]=f[i][j-1][k][2]+1;
else f[i][j][k][2]=f[i][j-1][k][2],f[i][j][k][1]=f[i][j-1][k][1]+1;
if(k>0)
{
if(ch[i][j]=='0')
{
f[i][j][k][1]=min(f[i][j][k][1],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2]));
f[i][j][k][2]=min(f[i][j][k][2],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2])+1);
}
else
{
f[i][j][k][2]=min(f[i][j][k][2],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2]));
f[i][j][k][1]=min(f[i][j][k][1],min(min(f[i][j-1][k-1][0],f[i][j-1][k-1][1]),f[i][j-1][k-1][2])+1);
}
}
}
}
for(int i=1;i<=n;i++)
for(int j=0;j<=m;j++)
g[i][j]=min(f[i][m][j][0],min(f[i][m][j][1],f[i][m][j][2]));
memset(dp,0x3f,sizeof dp);
dp[0][0]=0;
for(int i=1;i<=n;i++)
for(int j=t;j>=0;j--)
for(int k=0;k<=min(j,m);k++)
dp[i][j]=min(dp[i][j],dp[i-1][j-k]+g[i][k]);
printf("%d",n*m-dp[n][t]);
return 0;
}

Luogu P4158 [SCOI2009]粉刷匠(dp+背包)的更多相关文章

  1. [Bzoj1296][Scoi2009] 粉刷匠 [DP + 分组背包]

    1296: [SCOI2009]粉刷匠 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2184  Solved: 1259[Submit][Statu ...

  2. BZOJ 1296: [SCOI2009]粉刷匠( dp )

    dp[ i ][ j ] = max( dp[ i - 1 ][ k ] + w[ i ][ j - k ] )  ( 0 <= k <= j ) 表示前 i 行用了 j 次粉刷的机会能正 ...

  3. 【题解】洛谷P4158 [SCOI2009] 粉刷匠(DP)

    次元传送门:洛谷P4158 思路 f[i][j][k][0/1]表示在坐标为(i,j)的格子 已经涂了k次 (0是此格子涂错 1是此格子涂对)涂对的格子数 显然的是 每次换行都要增加一次次数 那么当j ...

  4. BZOJ1296: [SCOI2009]粉刷匠 DP

    Description windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个 ...

  5. P4158[SCOI2009]粉刷匠

    题目描述 windy有 N 条木板需要被粉刷. 每条木板被分为 M 个格子. 每个格子要被刷成红色或蓝色. windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色. 每个格子最多只能被 ...

  6. P4158 [SCOI2009]粉刷匠(洛谷)

    今天A了个紫(我膨胀了),他看起来像个贪心一样,老师说我写的是dp(dp理解不深的缘故QWQ) 直接放题目描述(我旁边有个家伙让我放链接,我还是说明出处吧(万一出处没有了)我讲的大多数题目都是出自洛谷 ...

  7. 洛谷P4158 [SCOI2009]粉刷匠

    传送门 设$dp[i][j][k][0/1]$表示在涂点$(i,j)$,涂了$k$次,当前点的颜色是否对,最多能刷对多少个格子 首先换行的时候肯定得多刷一次 然后是如果和前一个格子颜色相同,那么当前点 ...

  8. 洛谷 P4158 [SCOI2009]粉刷匠 题解

    每日一题 day59 打卡 Analysis 很容易看出是一个dp, dp[i][j[k][0/1]来表示到了(i,j)时,刷了k次,0表示这个没刷,1表示刷了. 于是有转移: 1.换行时一定要重新刷 ...

  9. [luogu4158 SCOI2009] 粉刷匠(dp)

    传送门 Solution 把状态都记上暴力转移即可 Code //By Menteur_Hxy #include <queue> #include <cmath> #inclu ...

随机推荐

  1. NX二次开发-UFUN获取点在面上U,V方向的位置UF_MODL_ask_face_parm【转载】

    NX11+VS2013 #include <uf.h> #include <uf_ui.h> #include <uf_modl.h> #include <u ...

  2. NX二次开发-打开弹出当前part所在的文件夹

    #include <uf.h> #include <uf_part.h> #include <atlstr.h> #include <iostream> ...

  3. C++之STL(标准模板库)

    STL:standard Template Lib 一.vector <1> 特点 <2> 常用函数: <3> 遍历方法: 1.for循环 2.迭代器 <4& ...

  4. (转)在Source Insight中看Python代码

    http://blog.csdn.net/lvming404/archive/2009/03/18/4000394.aspx SI是个很强大的代码查看修改工具,以前用来看C,C++都是相当happy的 ...

  5. React:styled-components

    ``是es6的Template Literals(模版字符串),许多人对这个一知半解,今天在这边总结下: `${expression}`(表达式插补) var x; var y; sth.innerH ...

  6. tcp_tw_recycle和tcp_timestamps的一些知识(转)

    现在很多公司都用LVS做负载均衡,通常是前面一台LVS,后面多台后端服务器,这其实就是NAT,当请求到达LVS后,它修改地址数据后便转发给后端服务器,但不会修改时间戳数据,对于后端服务器来说,请求的源 ...

  7. centOs 查看系统cpu使用率等--top

    原文:centOs 查看系统cpu使用率等--top 在系统维护的过程中,随时可能有需要查看 CPU 使用率,并根据相应信息分析系统状况的需要.在 CentOS 中,可以通过 top 命令来查看 CP ...

  8. Datagrid 的 SelectItem 和 SelectValue 如何区分、DataContext 和 ItemSource 在绑定时该绑哪个?

    1.selecteditem.selectedvalue.selectedvaluepath三个属性 场景: class T { public string A { get; set; } publi ...

  9. asp.net core2.0 依赖注入 AddTransient与AddScoped的区别 - 晓剑 - CSDN博客

    原文:asp.net core2.0 依赖注入 AddTransient与AddScoped的区别 - 晓剑 - CSDN博客 原文地址:http://www.tnblog.net/aojiancc2 ...

  10. Activiti学习笔记8 — UserTask私有任务的使用

    每一个UserTask都会在Execution表和Task表中各产生一条记录 一.创建流程引擎对象 /** * 1.创建流程引擎对象 */ private ProcessEngine processE ...