题面

由于本题中\(n\)很小,\(\Theta(n^2)\)的暴力也可以通过。

具体可参照洛谷题解区

#include <bits/stdc++.h>
#define itn int
#define gI gi using namespace std; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} int n, m, ans, cnt1, cnt2;
struct Node
{
int y, x1, x2;
} a[103]; int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 1; i <= n; i+=1) a[i].y = gi(), a[i].x1 = gi(), a[i].x2 = gi();
for (int i = 1; i <= n; i+=1)
{
cnt1 = cnt2 = 0;
for (int j = 1; j <= n; j+=1)
{
if (i == j || a[j].y >= a[i].y) continue;
if (a[i].x1 < a[j].x2 && a[i].x1 >= a[j].x1) cnt1 = max(cnt1, a[j].y);
if (a[i].x2 <= a[j].x2 && a[i].x2 > a[j].x1) cnt2 = max(cnt2, a[j].y);
}
ans += a[i].y * 2 - cnt1 - cnt2;
}
printf("%d\n", ans);
return 0;
}

题解【洛谷P2003】平板的更多相关文章

  1. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  2. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  3. 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)

    题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...

  4. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  5. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  6. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  7. 题解-洛谷P5217 贫穷

    洛谷P5217 贫穷 给定长度为 \(n\) 的初始文本 \(s\),有 \(m\) 个如下操作: \(\texttt{I x c}\),在第 \(x\) 个字母后面插入一个 \(c\). \(\te ...

  8. 题解 洛谷 P2010 【回文日期】

    By:Soroak 洛谷博客 知识点:模拟+暴力枚举 思路:题目中有提到闰年然后很多人就认为,闰年是需要判断的其实,含有2月29号的回文串,前四位是一个闰年那么我们就可以直接进行暴力枚举 一些小细节: ...

  9. 题解 洛谷P2158 【[SDOI2008]仪仗队】

    本文搬自本人洛谷博客 题目 本文进行了一定的更新 优化了 Markdown 中 Latex 语句的运用,加强了可读性 补充了"我们仍不曾知晓得 消失的 性质5 ",加强了推导的严谨 ...

随机推荐

  1. CSS3结构类选择器补充

    :empty 没有子元素(包括文本节点)的元素 :not  否定选择器 <!DOCTYPE html> <html lang="en" manifest=&quo ...

  2. Unbuntu--安装VMware Tools

    实现虚拟机Ubuntu窗口自适应,以及与本地主机粘贴复制 一.安装VMware Tools 1.首先在虚拟机点击安装VMware tools,会在个人home目录下生成VMwareTools-10.3 ...

  3. 如何在Mac上显示和查看隐藏的文件/文件夹

    今天的文章推出的是如何在Mac上显示和查看隐藏的文件/文件夹.出于隐私或安全性考虑,出于多种原因,我们需要在Mac计算机上隐藏某些文件.这些文件或文件夹在默认情况下是为Mac的平稳运行而隐藏的,但是如 ...

  4. 第十届蓝桥杯CB题目I-分析

    思路分析://感谢写文博主 思路:相信大多数人和我一样在比赛的时候把这题想的太简单了_(:з」∠)_ 这题和去年的最后一题很类似,就是分类讨论,去年放在了最后一题,今年在倒数第二题,说明难度不算太难, ...

  5. [Python]PyCharm在创建py文件时自动添加头部注释

    在Pycharm主界面找到 File ----->> Setting ----->> Editor ----->> File and Code Templates ...

  6. 理解Android线程创建流程

    copy from : http://gityuan.com/2016/09/24/android-thread/ 基于Android 6.0源码剖析,分析Android线程的创建过程 /androi ...

  7. Wannafly Winter Camp 2020 Day 6H 异或询问 - 二分

    给定一个长 \(n\) 的序列 \(a_1,\dots,a_n\),定义 \(f(x)\) 为有多少个 \(a_i \leq x\) 有 \(q\) 次询问,每次给定 \(l,r,x\),求 \(\s ...

  8. CVE-2019-1388 UAC提权复现

    0x01 前言 该漏洞位于Windows的UAC(User Account Control,用户帐户控制)机制中.默认情况下,Windows会在一个单独的桌面上显示所有的UAC提示--Secure D ...

  9. ARM微处理器中支持字节、半字、字三种数据类型,地址的低两位为0是啥意思?

    问题: ARM微处理器中支持字节.半字.字三种数据类型,其中,字需要4字节对齐(地址的低两位为0).半字需要2字节对齐(地址的最低位为0).我想问的是括号中的内容是什么意思呢?请牛人帮忙解释一下!谢谢 ...

  10. Largest Rectangle in a Histogram POJ - 2559

    很显然是单调栈 这里记录一种新的写法,这种写法基于递推,但是相比之下比单调栈更好写 #include<cstdio> #include<map> #include<set ...