【deep learning学习笔记】注释yusugomori的LR代码 --- 模型测试
测试部分代码:
void test_lr()
{
srand(0); double learning_rate = 0.1;
double n_epochs = 500; int train_N = 6;
int test_N = 2;
int n_in = 6;
int n_out = 2;
// int **train_X;
// int **train_Y;
// int **test_X;
// double **test_Y; // train_X = new int*[train_N];
// train_Y = new int*[train_N];
// for(i=0; i<train_N; i++){
// train_X[i] = new int[n_in];
// train_Y[i] = new int[n_out];
// }; // test_X = new int*[test_N];
// test_Y = new double*[test_N];
// for(i=0; i<test_N; i++){
// test_X[i] = new int[n_in];
// test_Y[i] = new double[n_out];
// } // training data
int train_X[6][6] = {
{1, 1, 1, 0, 0, 0},
{1, 0, 1, 0, 0, 0},
{1, 1, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0},
{0, 0, 1, 1, 0, 0},
{0, 0, 1, 1, 1, 0}
}; int train_Y[6][2] = {
{1, 0},
{1, 0},
{1, 0},
{0, 1},
{0, 1},
{0, 1}
}; // construct LogisticRegression
LogisticRegression classifier(train_N, n_in, n_out);
// i wonder that we should set the N value to 1 as training online
//LogisticRegression classifier(1, n_in, n_out); // train online
for(int epoch=0; epoch<n_epochs; epoch++) {
for(int i=0; i<train_N; i++) {
classifier.train(train_X[i], train_Y[i], learning_rate);
}
// learning_rate *= 0.95;
} // test data
int test_X[2][6] = {
{1, 0, 1, 0, 0, 0},
{0, 0, 1, 1, 1, 0}
}; double test_Y[2][2]; // test
for(int i=0; i<test_N; i++) {
classifier.predict(test_X[i], test_Y[i]);
for(int j=0; j<n_out; j++) {
cout << test_Y[i][j] << " ";
}
cout << endl;
} } int main()
{
test_lr();
getchar();
return 0;
}
测试数据实际上是在训练集合中的,分别是第二个和第四个训练数据,也就是说,这是“封闭测试”。测试结果如下所示:
不过总感觉这个调用
“
LogisticRegression classifier(train_N, n_in, n_out);
”
不对。在线训练,是单个样本为单位的训练,train_N的值应该设置为1。将这一句改成
“
LogisticRegression classifier(1, n_in, n_out);
”
运行结果如下:
与上面的结果差别不大。恐怕要到实际应用中检验了。
【deep learning学习笔记】注释yusugomori的LR代码 --- 模型测试的更多相关文章
- 【deep learning学习笔记】注释yusugomori的DA代码 --- dA.h
DA就是“Denoising Autoencoders”的缩写.继续给yusugomori做注释,边注释边学习.看了一些DA的材料,基本上都在前面“转载”了.学习中间总有个疑问:DA和RBM到底啥区别 ...
- 【deep learning学习笔记】注释yusugomori的RBM代码 --- 头文件
百度了半天yusugomori,也不知道他是谁.不过这位老兄写了deep learning的代码,包括RBM.逻辑回归.DBN.autoencoder等,实现语言包括c.c++.java.python ...
- [置顶]
Deep Learning 学习笔记
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不 ...
- Deep Learning 学习笔记(8):自编码器( Autoencoders )
之前的笔记,算不上是 Deep Learning, 只是为理解Deep Learning 而需要学习的基础知识, 从下面开始,我会把我学习UFDL的笔记写出来 #主要是给自己用的,所以其他人不一定看得 ...
- 【deep learning学习笔记】Recommending music on Spotify with deep learning
主要内容: Spotify是个类似酷我音乐的音乐站点.做个性化音乐推荐和音乐消费.作者利用deep learning结合协同过滤来做音乐推荐. 详细内容: 1. 协同过滤 基本原理:某两个用户听的歌曲 ...
- Neural Networks and Deep Learning学习笔记ch1 - 神经网络
近期開始看一些深度学习的资料.想学习一下深度学习的基础知识.找到了一个比較好的tutorial,Neural Networks and Deep Learning,认真看完了之后觉得收获还是非常多的. ...
- paper 149:Deep Learning 学习笔记(一)
1. 直接上手篇 台湾李宏毅教授写的,<1天搞懂深度学习> slideshare的链接: http://www.slideshare.net/tw_dsconf/ss-62245351? ...
- Deep Learning 学习笔记——第9章
总览: 本章所讲的知识点包括>>>> 1.描述卷积操作 2.解释使用卷积的原因 3.描述pooling操作 4.卷积在实践应用中的变化形式 5.卷积如何适应输入数据 6.CNN ...
- 【Deep Learning学习笔记】Dynamic Auto-Encoders for Semantic Indexing_Mirowski_NIPS2010
发表于NIPS2010 workshop on deep learning的一篇文章,看得半懂. 主要内容: 是针对文本表示的一种方法.文本表示可以进一步应用在文本分类和信息检索上面.通常,一篇文章表 ...
随机推荐
- [置顶] Android开发之XML文件的解析
Android系统开发之XML文件的解析 我们知道Http在网络传输中的数据组织方式有三种分别为:XML方式.HTML方式.JSON方式.其中XML为可扩展标记语言,如下: <?xml vers ...
- 测试DOM0级事件和DOM2级事件的堆叠
1. 问题 如果大家看过北风网CJ讲师的Javascript视频教程,就可以看到其封装了一个很强的事件添加和删除函数,如下所示 function addEvent(obj, evtype, fn) { ...
- GREENPLUM简单介绍
原帖:http://www.itpub.net/thread-1409964-1-1.html 什么是GREENPLUM? 对于非常多IT人来说GREENPLUM是个陌生的名字.简单的说它就是一个与O ...
- eclipse、MyEclipse实现批量改动文件编码
在使用eclipse或MyEclipse编程时,常常遇到部分文件打开后出现乱码的情况(特别是在导入项目后) 1:右击项目选择properties->Resource>Other选择UTF- ...
- libevent: linux安装libevent
http://libevent.org/上下载最新的libevent, 如 libevent-2.0.22-stable.tar.gz. 然后解压,按照README里面的步骤安装.
- 32位程序在64位系统上获取系统安装时间(要使用KEY_WOW64_64KEY标记)
众所周知,取系统的安装时间可取注册表HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion的子项InstallDate,此值是个 ...
- ACM一些题目
Low Power 先二分答案,可以通过调整证明同一台机器选的两个芯片必然是提供能量数值相邻的两个.所以再贪心一下就可以了. 时间复杂度\(O(n \log n)\). Factors 假设\(k\) ...
- 一步一步重写 CodeIgniter 框架 (4) —— load_class 管理多个对象实例的思路
我们使用CodeIgniter 框架最主要是想利用其 MVC 特性,将模型.视图分开,并通过控制器进行统一控制.在尝试实现 MVC 模式之前,我们将实现其中一个对程序结构非常有用的技巧,就是 load ...
- Java+7入门经典 -1 简介
第一章 Java简介 1.1 Java概览 applet程序可嵌入网页; Java会通过隐式检测禁止Java applet的恶意代码; Java Server Pages-JSP 创建服务器应用程序, ...
- AsyncTask总结(经典,附带源码)
一.整体工程图 二.MainActivity.java package com.jltxgcy.asynctaskdemo; import android.app.Activity; import a ...