[bzoj4665]小w的喜糖_二项式反演
小w的喜糖
题目链接:https://lydsy.com/JudgeOnline/problem.php?id=4665
数据范围:略。
题解:
二项式反演裸题。
$f_{i,j}$表示,前$i$种钦定$j$拿到自己种类糖果的方案数。
求完了之后可以二项式反演回来即可。
代码:
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int mod = 1000000009 ; int n, m; ll ans; int col[2010], s[2010], v[2010]; ll c[2010][2010], f[2010][2010], jc[2010], ine[2010], jcc[2010]; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() {
int x = 0, f = 1;
char c = nc();
while (c < 48) {
if (c == '-')
f = -1;
c = nc();
}
while (c > 47) {
x = (((x << 2) + x) << 1) + (c ^ 48), c = nc();
}
return x * f;
} int main() {
n = rd();
for (int i = 0; i <= n; i ++ ) {
c[i][0] = 1;
for(int j = 1; j <= i; j ++ ) {
c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod;
}
}
jc[0] = ine[0] = jcc[0] = jc[1] = ine[1] = jcc[1] = 1;
for (int i = 2; i <= n; i ++ ) {
jc[i] = (ll)jc[i - 1] * i % mod;
ine[i] = mod - (mod / i) * ine[mod % i] % mod;
jcc[i] = (ll)jcc[i - 1] * ine[i] % mod;
}
for (int i = 1; i <= n; i ++ ) {
col[i] = rd();
}
sort(col + 1, col + n + 1);
for (int i = 1; i <= n; i ++ ) {
if (col[i] > col[i - 1]) {
m ++ ;
}
v[m] ++ ;
}
for(int i = 1; i <= m; i ++ ) {
s[i] = s[i - 1] + v[i];
}
f[0][0] = 1;
for (int i = 1; i <= m; i ++ ) {
for (int j = 0; j <= s[i - 1]; j ++ ) {
for (int k = 0; k <= v[i]; k ++ ) {
f[i][j + k] = (f[i][j + k] + (ll)f[i-1][j] * c[v[i]][k] % mod * jc[v[i]] % mod * jcc[v[i] - k] % mod) % mod;
}
}
}
for (int i = 0; i <= n; i ++ ) {
ans = (ans + (ll)((i & 1) ? -1 : 1) * f[m][i] * jc[n - i] + mod) % mod;
}
for (int i = 1; i <= m; i ++ ) {
ans = (ll)ans * jcc[v[i]] % mod;
}
cout << ans << endl ;
return 0;
}
[bzoj4665]小w的喜糖_二项式反演的更多相关文章
- bzoj4665小w的喜糖 dp+容斥
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 120 Solved: 72[Submit][Status][Discuss] ...
- bzoj4665 小w的喜糖(dp+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 222 Solved: 130[Submit][Status][Discuss ...
- BZOJ4665: 小w的喜糖 DP
对于这道题,首先每个人的位置并不影响结果 所以我们可以将相同颜色糖果的人放在一块处理 设 $f_{i,j}$ 表示处理到第 $i$ 种糖果至少有 $j$ 人的糖果和原先的类型相同 枚举当前种类中不满足 ...
- BZOJ4665 : 小w的喜糖
考虑枚举哪些人一定不合法,那么方案数可以通过简单的排列组合算出. 于是设$f[i][j]$表示前$i$种糖果,一共有$j$个人一定不合法的方案数,但是这样并不能保证其他人一定合法,所以需要进行容斥. ...
- 【BZOJ4665】小w的喜糖 容斥+组合数
[BZOJ4665]小w的喜糖 Description 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那 ...
- 小w的喜糖(candy)
小w的喜糖(candy) 题目描述 废话不多说,反正小w要发喜糖啦!! 小w一共买了n块喜糖,发给了n个人,每个喜糖有一个种类.这时,小w突发奇想,如果这n个人相互交换手中的糖,那会有多少种方案使得每 ...
- 【BZOJ 4665】 4665: 小w的喜糖 (DP+容斥)
4665: 小w的喜糖 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 94 Solved: 53 Description 废话不多说,反正小w要发喜 ...
- ●BZOJ 4665 小w的喜糖
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4665 题解: 容斥,dp令 v[i] 表示原来拥有i类糖果的人数. (一个套路,首先把每个糖 ...
- BZOJ 4665: 小w的喜糖
Sol DP+容斥. 这就是一个错排的扩展...可是想到容斥却仅限于种数的容斥,如果种数在一定范围内我就会做了QAQ. 但是容斥的是一定在原来位置的个数. 发现他与原来的位置无关,可以先把每个同种的糖 ...
随机推荐
- Vuex框架原理与源码分析
Vuex是一个专为Vue服务,用于管理页面数据状态.提供统一数据操作的生态系统.它集中于MVC模式中的Model层,规定所有的数据操作必须通过 action - mutation - state ch ...
- 第一章 初识Linux shell
Linux 由内核.GNU.桌面环境.应用软件四部分组成 内核基本功能: (1). 管理内存 (2). 管理硬件设备 (3). 管理文件系统 (4). 管理软件程序 GNU:操作系统需要一些工具来执行 ...
- surprise库官方文档分析(二):使用预测算法
1.使用预测算法 Surprise提供了一堆内置算法.所有算法都派生自AlgoBase基类,其中实现了一些关键方法(例如predict,fit和test).可以在prediction_algorith ...
- Zotero使用教程(1)-安装及配置
小书匠kindle 作为一名科研人员,经常要阅读大量文献(当然我收集>>阅读,哎!),收集来的文献一般我们使用文件夹管理,通常使用文件夹命名和层级分布解决论文的分类问题. 但是,实 ...
- cesium地下模式(地表透明)3
这篇博客主要解决“瓦片的白色网格”问题 设置skirt=0可以解决这个问题,需要设置3个地方 1.HeightmapTerrainData.js createMesh方法 this._skirtHei ...
- @Transactional 注解参数详解
Transactional参数说明 参数名称 功能描述 readOnly 该属性用于设置当前事务是否为只读事务,设置为true表示只读,false则表示可读写,默认值为false.例如:@Transa ...
- Dp优化之决策单调栈优化
证明:g(i) ≤ g(j) (i ≤ j) 令 d=g(i) , k<d , 设cut = x表示 f(i) = f(x) + w[x,i] ( x < i ) 构造一个式子: ...
- Jenkins 更新 jenkins.war的方法
Jenkins 有时候更新,直接是主页提示下载 jenkins.war只需要把下载的jenkins.war 替换原来的jenkins.war 就可以了那么问题来了? 原来的 jenkins.war 到 ...
- iframe窗口嵌套,子窗口跳转重叠在父窗口的问题
window.top //最顶层窗口 window.self //当前窗口 window.parent //父级窗口 "window.location.href"."lo ...
- linux内核中设备树的维护者仓库地址
1. 仓库地址 git://git.kernel.org/pub/scm/linux/kernel/git/robh/linux.git https://kernel.googlesource.com ...