题目来源:洛谷

题目描述

设有N×N的方格图(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):

A
0 0 0 0 0 0 0 0
0 0 13 0 0 6 0 0
0 0 0 0 7 0 0 0
0 0 0 14 0 0 0 0
0 21 0 0 0 4 0 0
0 0 15 0 0 0 0 0
0 14 0 0 0 0 0 0
0 0 0 0 0 0 0 0
B

某人从图的左上角的A点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B点共走两次,试找出2条这样的路径,使得取得的数之和为最大。

输入输出格式

输入格式:

输入的第一行为一个整数N(表示N×N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。

输出格式:

只需输出一个整数,表示2条路径上取得的最大的和。

输入输出样例

输入样例#1:

8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例#1:

67

说明

NOIP 2000 提高组第四题

解析:

这题真是跟P1006 传纸条一毛一样,连一点区别都没有,CCF你要点脸好不。

我写的传纸条的题解,戳这里。这题就不多讲了,没区别,真的一点都没有。

参考代码:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<string>
#include<cstdlib>
#include<queue>
#include<vector>
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 101
#define MOD 2520
#define E 1e-12
using namespace std;
int a[][],dp[][][];
int main()
{
int n,x,y,val;
scanf("%d",&n);
while(cin>>x>>y>>val&&x!=&&y!=&&val!=)
a[x][y]=val;
dp[][][]=a[][];
for(int i=;i<=n*-;i++)
for(int x1=;x1<=min(n,i);x1++)
for(int x2=;x2<=min(n,i);x2++){
int y1=i+-x1,y2=i+-x2;
dp[i][x1][x2]=max(max(dp[i-][x1][x2],dp[i-][x1-][x2]),max(dp[i-][x1-][x2-],dp[i-][x1][x2-]));
if(x1==x2) dp[i][x1][x2]+=a[x1][y1];
else dp[i][x1][x2]+=a[x1][y1]+a[x2][y2];
}
cout<<dp[n*-][n][n]<<endl;
return ;
}

P1004 方格取数[棋盘dp]的更多相关文章

  1. 洛谷P1004 方格取数-四维DP

    题目描述 设有 N \times NN×N 的方格图 (N \le 9)(N≤9) ,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 00 .如下图所示(见样例): A 0 0 0 0 0 ...

  2. 洛谷 - P1004 - 方格取数 - 简单dp

    https://www.luogu.org/problemnew/show/P1004 这道题分类到简单dp但是感觉一点都不简单……这种做两次的dp真的不是很懂怎么写.假如是贪心做两次,感觉又不能证明 ...

  3. 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏

    P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...

  4. P1004 方格取数(四维dp)

    P1004 方格取数 思路如下 这题是看洛谷大佬的思路才写出来的,所以我会把大佬的思路展示如下: 1⃣️:我们可以找到一个叫思维dp的东西,dp[i][j][k][l],其中前两维表示一个人从原点出发 ...

  5. P1004 方格取数——奇怪的dp

    P1004 方格取数 题目描述 设有 \(N\times N\) 的方格图 \((N\leq 20)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字 \(0\) .如下图所示(见样例) ...

  6. [动态规划]P1004 方格取数

    ---恢复内容开始--- 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 人数字0.如下图所示(见样例): A 0 0 0 0 0 0 0 0 0 ...

  7. 洛谷 P1004 方格取数 题解

    P1004 方格取数 题目描述 设有 \(N \times N\) 的方格图 \((N \le 9)\),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字\(0\).如下图所示(见样例): ...

  8. 方格取数(dp)

    方格取数 时间限制: 1 Sec  内存限制: 128 MB提交: 9  解决: 4[提交][状态][讨论版][命题人:quanxing] 题目描述 设有N×N的方格图,我们在其中的某些方格中填入正整 ...

  9. 洛谷 P1004 方格取数 【多进程dp】

    题目链接:https://www.luogu.org/problemnew/show/P1004 题目描述 设有N*N的方格图(N<=9),我们将其中的某些方格中填入正整数,而其他的方格中则放 ...

随机推荐

  1. 【miscellaneous】gstreamer构建的简单方法

    在博文"Gstreamer在Ubuntu上的安装和MP3的播放"中,写了在ubuntu上从头到尾构建gstreamer的详细过程,那是我在一次小项目培训中和队友一起努力了将近一周的 ...

  2. FineReport做成之后如何在Tomcat上运行

    问题描述: 自己用FineReport做成的报表画面,要在Tomcat上运行启动 第一步:下载Tomcat 网址: http://tomcat.apache.org/download-80.cgi 下 ...

  3. 数据结构 -- 二叉树(Binary Search Tree)

    一.简介 在计算机科学中,二叉树是每个结点最多有两个子树的树结构.通常子树被称作“左子树”(left subtree)和“右子树”(right subtree).二叉树常被用于实现二叉查找树和二叉堆. ...

  4. Java的设计模式之开篇(1)

    什么是设计模式呢?这个问题曾经一直困扰着我,以前我一直以为这是门新的技术,但是随着工作年限和工作经验的增加,其实设计模式就是已经在众多软件系统得到验证的成功的并且可复用的技术方案或者解决问题的方案.J ...

  5. 详解Cookie、Session和缓存

    1 Cookie和Session Cookie和Session都为了用来保存状态信息,都是保存客户端状态的机制,它们都是为了解决HTTP无状态的问题而所做的努力. Session可以用Cookie来实 ...

  6. Python_OpenCV视频截取并保存

    在图像处理之前,我们需要对拿到手的数据进行筛选,对于视频,我们需要从中截取我们需要的一段或几段 整体思路比较简单,通过设定截取视频的起止时间(帧数),可以将该时间段内的图像保存为新的视频 直接上代码: ...

  7. 位、字,字节与KB的关系?

    位:我们常说的bit,位就是传说中提到的计算机中的最小数据单位:说白了就是0或者1:计算机内存中的存储都是01这两个东西. 字节:英文单词:(byte),byte是存储空间的基本计量单位.1byte  ...

  8. SAS学习笔记29 logistic回归

    变量筛选 当对多个自变量建立logistic回归模型时,并不是每一个自变量对模型都有贡献.通常我们希望所建立的模型将具有统计学意义的自变量都包含在内,而将没有统计学意义的自变量排除在外,即进行变量筛选 ...

  9. ggplot2|详解八大基本绘图要素

    本文首发于微信公众号 *“ 生信补给站 ” ,期待您的关注!!!* 原文链接:https://mp.weixin.qq.com/s?__biz=MzIyNDI1MzgzOQ==&mid=265 ...

  10. (十三)Activitivi5之流程控制网关:并行

    一.概念 所谓排他网关 顾名思义 执行到该网关,会有多条线路同时并行执行,当都执行完才继续执行后面的: 二. 案例 此时当“学生请假”任务节点完成之后,如下图此时有两个任务,必须等到两个任务都完成才会 ...