Paper Reading:Deep Neural Networks for Object Detection
发表时间:2013
发表作者:(Google)Szegedy C, Toshev A, Erhan D
发表刊物/会议:Advances in Neural Information Processing Systems(NIPS)
本文实现了一种利用DNN来做目标检测的方法。当时,CNN等深度学习在识别上面做的还挺好,但是在目标检测上面没有特别突出的结果。本文中作者把目标检测看做一个回归问题,回归目标窗口(BoundingBox)的位置,寻找一张图片当中目标类别和目标出现的位置。
作者在ImageNet CNN(见下图)基础上构建网络模型。ImageNet CNN共7层,前5层为卷积+Relu层(其中3层包含Max Pooling),后2层为全连接层。本文将ImageNet CNN的最后一层(Softmax Classifer)替换成了Regression Layer。
首先,作者制定了一个基于DNN的回归方法,它的输出是对象Bounding Boxes的二值masks;其次,利用一个简单的Bounding Boxes从这些masks中推理提取出检测对象;最后,在全图以及少数修剪后的大图上进行调整,从而提高定位的精度。下图是基于DNNs进行对象检测的原理图(Figure 1)以及微调步骤图(Figure 2)。
Regression Layer生成对象的Binary Mask \(DNN(x; \theta)\in \Bbb R^N\),其中$\theta$是模型的参数,\(N\) 是对象的像素总数。由于模型的输出维度固定,因此假设模型所预测的输出大小为$ N=d×d$ 。对于Resized后,符合模型输入的图片,经模型得到的Binary Masks结果包含一个或多个对象,然后规定属于对象中的Binary Mask的值为1,否则为0。
通过最小化每张图片$x$ 的Binary Mask与Ground Truth mask \(m∈[0,1]N\) 差值的 \(L_2\) 范式对模型进行训练,Loss Funciton 如下所示:
min_{\ \theta} \sum_{(x, y) \in \theta} \Vert (Diag(m) + \lambda I)^{1 \over 2} (DNN(x; \theta)-m)\Vert ^2 _2
\]
其中$D$是图片训练集,这些图片包含Bounding Boxed Objects,而图片中的Bounding Boxed Objects被表征为Binary Masks。
从损失函数的形式可以看出,它具有非凸性,则求解最优值将得不到保证。通常,可以利用Varying Weights对Loss Function进行Regularize。对于绝大多数Objects的尺寸相对于整个图片来说比较小,从而使得模型容易将平凡解(指尺寸比较小的Objects)容易被忽略掉。为了避免这个问题,Loss Function利用参数 \(λ∈R^+\) 来调整模型中的权重值,模型的输出若为与Ground Truth Mask对应的非零值,则增加输出的Weight。若所选择的参数 \(λ\) 比较小,则具有Groundtruth value 0的输出上的误差被惩罚的强度将小于Groundtruth value1的误差,因此即使模型输出的Masks属于Objects的强度比较弱,也能促使模型预测其为非零值。在本论文的实现中,作者设计模型的输入是$ 225×225$ 而输出的Binary Mask是 \(d×d\),其中 \(d=24\)。
论文主要对三个具有挑战性的问题进行分析和解决。第一,模型输出的单个Object Mask无法有效地对相互靠近的歧义Objects进行对象检测;第二,由于模型输出大小的限制,所生成的Obinary Mask的尺寸相对于原始图片显得及其小,譬如: $400×400$, \(d=24\),那么每个输出对应到原始图片的单元大小大约为$16×16 $,故无法精确地对对象进行定位,而在原始图片更小的时候,难度将更大;第三,受输入是整张图片的影响,尺寸比较小的Objects对Input Neurons的影响很小,从而使得识别变得困难。
参考:
bolg
Paper Reading:Deep Neural Networks for Object Detection的更多相关文章
- Paper Reading:Deep Neural Networks for YouTube Recommendations
论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams ...
- Deep Neural Networks for Object Detection(翻译)
0 - Abstract 深度神经网络(DNNs)最近在图像分类任务上表现出了突出的性能.在这篇文章中,我们进一步深入探究使用DNNs进行目标检测的问题,这个问题不仅需要对物体进行分类,并且还需要对各 ...
- Coursera, Deep Learning 4, Convolutional Neural Networks, week3, Object detection
学习目标 Understand the challenges of Object Localization, Object Detection and Landmark Finding Underst ...
- On Explainability of Deep Neural Networks
On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...
- 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)
Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...
- Paper Reading: Relation Networks for Object Detection
Relation Networks for Object Detection笔记 写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...
- Must Know Tips/Tricks in Deep Neural Networks
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially C ...
- Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...
- (转)Understanding, generalisation, and transfer learning in deep neural networks
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017 Thi ...
随机推荐
- 【AMAD】sorl-thumbnail -- Django缩略图
动机 简介 个人评分 动机 生成缩略图是一个烦人的工作. 简介 sorl-thumbnail1的特性包括: 支持不同的storage 实现缩略图的引擎是可以切换的:Pillow, ImageMagic ...
- 虚拟机中CentOS 7 x64图形化界面的安装
VMware的初始设置如下: 图1 待虚拟机读取完iso,出现此界面 图2 我们主要是安装图形化界面的系统,所以在软件选择栏下如图选择: 图3 设置root密码,创建用户,等候安装完成: 图4 安装完 ...
- .NET的垃圾回收机制
.NET的垃圾回收机制: CLR管理内存的区域主要有三块: 一: 线程的堆栈 ,用于分配值类型实例.堆栈主要有操作系统管理,不受垃圾收集器的控制,当值类型实例所在的方法结束时,其存储单位自动释放.栈的 ...
- sqlmap(网站数据库注入)
*教程 http://www.nxadmin.com/tools/1241.html 一.ASP网站 1. sqlmap -u “http://www.czypjx.com/News_show.asp ...
- 记2017年年底,几次Python后端面试
1. 果壳 电话面试: 说一下TCP的三次握手,四次挥手,为什么会这样? http安全的性的了解,说一下对cookie和session的了解: 对mysql的了解,说一下你常用的数据类型,char和v ...
- 机器猫css
<html> <head> <title>机器猫</title> <style> div{ width: 30px; h ...
- hdu 3371 有毒的卡时间题目
同样的代码 每次交的结果都不一样 #include<stdio.h> #include<string.h> #include<stdlib.h> #include& ...
- 开始学Python 啦 ,持续不断总结中。。(转)快捷键的使用
最重要的快捷键1. ctrl+shift+A:万能命令行2. shift两次:查看资源文件新建工程第一步操作1. module设置把空包分层去掉,compact empty middle packag ...
- kubernetes 集群内部访问外部的数据库endpoint
k8s访问集群外独立的服务最好的方式是采用Endpoint方式,以mysql服务为例: 创建mysql-service.yaml apiVersion: v1 kind: Service metada ...
- Javascript的学习清单
Javascript的学习清单 Javascript学习资源 程序员必读书籍 深入理解JavaScript系列 es6教程 jQuery中文文档 vue官网 zeptojs中文版 常用的插件与UI组件 ...