发表时间:2013
发表作者:(Google)Szegedy C, Toshev A, Erhan D
发表刊物/会议:Advances in Neural Information Processing Systems(NIPS)

本文实现了一种利用DNN来做目标检测的方法。当时,CNN等深度学习在识别上面做的还挺好,但是在目标检测上面没有特别突出的结果。本文中作者把目标检测看做一个回归问题,回归目标窗口(BoundingBox)的位置,寻找一张图片当中目标类别和目标出现的位置。
作者在ImageNet CNN(见下图)基础上构建网络模型。ImageNet CNN共7层,前5层为卷积+Relu层(其中3层包含Max Pooling),后2层为全连接层。本文将ImageNet CNN的最后一层(Softmax Classifer)替换成了Regression Layer。

ImageNet CNN

首先,作者制定了一个基于DNN的回归方法,它的输出是对象Bounding Boxes的二值masks;其次,利用一个简单的Bounding Boxes从这些masks中推理提取出检测对象;最后,在全图以及少数修剪后的大图上进行调整,从而提高定位的精度。下图是基于DNNs进行对象检测的原理图(Figure 1)以及微调步骤图(Figure 2)。

基于DNNs进行对象检测

Regression Layer生成对象的Binary Mask \(DNN(x; \theta)\in \Bbb R^N\),其中$\theta$是模型的参数,\(N\) 是对象的像素总数。由于模型的输出维度固定,因此假设模型所预测的输出大小为$ N=d×d$ 。对于Resized后,符合模型输入的图片,经模型得到的Binary Masks结果包含一个或多个对象,然后规定属于对象中的Binary Mask的值为1,否则为0。
通过最小化每张图片$x$ 的Binary Mask与Ground Truth mask \(m∈[0,1]N\) 差值的 \(L_2\) 范式对模型进行训练,Loss Funciton 如下所示:

\[
min_{\ \theta} \sum_{(x, y) \in \theta} \Vert (Diag(m) + \lambda I)^{1 \over 2} (DNN(x; \theta)-m)\Vert ^2 _2
\]

其中$D$是图片训练集,这些图片包含Bounding Boxed Objects,而图片中的Bounding Boxed Objects被表征为Binary Masks。
从损失函数的形式可以看出,它具有非凸性,则求解最优值将得不到保证。通常,可以利用Varying Weights对Loss Function进行Regularize。对于绝大多数Objects的尺寸相对于整个图片来说比较小,从而使得模型容易将平凡解(指尺寸比较小的Objects)容易被忽略掉。为了避免这个问题,Loss Function利用参数 \(λ∈R^+\) 来调整模型中的权重值,模型的输出若为与Ground Truth Mask对应的非零值,则增加输出的Weight。若所选择的参数 \(λ\) 比较小,则具有Groundtruth value 0的输出上的误差被惩罚的强度将小于Groundtruth value1的误差,因此即使模型输出的Masks属于Objects的强度比较弱,也能促使模型预测其为非零值。在本论文的实现中,作者设计模型的输入是$ 225×225$ 而输出的Binary Mask是 \(d×d\),其中 \(d=24\)。
论文主要对三个具有挑战性的问题进行分析和解决。第一,模型输出的单个Object Mask无法有效地对相互靠近的歧义Objects进行对象检测;第二,由于模型输出大小的限制,所生成的Obinary Mask的尺寸相对于原始图片显得及其小,譬如: $400×400$, \(d=24\),那么每个输出对应到原始图片的单元大小大约为$16×16 $,故无法精确地对对象进行定位,而在原始图片更小的时候,难度将更大;第三,受输入是整张图片的影响,尺寸比较小的Objects对Input Neurons的影响很小,从而使得识别变得困难。

参考:
bolg

Paper Reading:Deep Neural Networks for Object Detection的更多相关文章

  1. Paper Reading:Deep Neural Networks for YouTube Recommendations

    论文:Deep Neural Networks for YouTube Recommendations 发表时间:2016 发表作者:(Google)Paul Covington, Jay Adams ...

  2. Deep Neural Networks for Object Detection(翻译)

    0 - Abstract 深度神经网络(DNNs)最近在图像分类任务上表现出了突出的性能.在这篇文章中,我们进一步深入探究使用DNNs进行目标检测的问题,这个问题不仅需要对物体进行分类,并且还需要对各 ...

  3. Coursera, Deep Learning 4, Convolutional Neural Networks, week3, Object detection

    学习目标 Understand the challenges of Object Localization, Object Detection and Landmark Finding Underst ...

  4. On Explainability of Deep Neural Networks

    On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...

  5. 目标检测--Scalable Object Detection using Deep Neural Networks(CVPR 2014)

    Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander ...

  6. Paper Reading: Relation Networks for Object Detection

    Relation Networks for Object Detection笔记  写在前面:关于这篇论文的背景知识,请参考我前面的两篇随笔(<关于目标检测>和<关于注意力机制> ...

  7. Must Know Tips/Tricks in Deep Neural Networks

    Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)   Deep Neural Networks, especially C ...

  8. Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei)

    http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html Deep Neural Networks, especially Conv ...

  9. (转)Understanding, generalisation, and transfer learning in deep neural networks

    Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   Thi ...

随机推荐

  1. 蓝牙AT模式

      一.蓝牙AT模式设置方式 在通电前按住蓝牙模块黑色按钮,接电,当蓝牙指示灯按每隔两秒闪烁一次时进入AT模式: 有3种设置方式: 1.默认设置 模块工作角色:从模式    串口参数:38400bit ...

  2. Ubuntu 修改登录界面,使用root用户登录

    修改: sudo vi /etc/pam.d/gdm-autologin注释行 "auth requied pam_succeed_if.so user != root quiet succ ...

  3. Windows10系统Python2.7通过Swig调用C++过程

    我用的 python版本是2.7.12: Python 2.7.12 (v2.7.12:d33e0cf91556, Jun 27 2016, 15:24:40) [MSC v.1500 64 bit ...

  4. 性能优化-屏幕常亮与CPU唤醒

    Android在不使用的时候,屏幕在一段时间以后会变暗,再过一段时间就会熄屏,此时CPU就会休眠,那么在这个时候,Timer.Handler.Thread.Service等都会暂停,有时候我们需要屏幕 ...

  5. python解析html

    *参考 推荐BeautifulSoup http://blog.csdn.net/abclixu123/article/details/38502993 http://www.cnblogs.com/ ...

  6. golang写入csv

    package main import ( "encoding/csv" "fmt" "os" ) func main() { file, ...

  7. uva 1400 "Ray, Pass me the dishes!" (区间合并 最大子段和+输出左右边界)

    题目链接:https://vjudge.net/problem/UVA-1400 题意:给一串序列,求最大子段,如果有多个,输出字典序最小的那个的左右端点 思路: 之前写过类似的,这个麻烦点需要输出左 ...

  8. 解决redis运行期间key值过期但是内存memory依然占用过高

    要解决这个问题,首先要了解redis info信息中几个数据的意义:   used_memory:810575104 //数据占用了多少内存(字节)  used_memory_human:773.02 ...

  9. 如何判断你的windows系统是32位还是64位?

    [学习笔记] 如 何判断你的windows系统是32位还是64位? java -version时,如果没有64就是32位的.eclipse.ini中如果没有64,就是32位的.但是我们的ini文件里面 ...

  10. 【Python】**kwargs和takes 1 positional argument but 2 were given

    Python的函数定义中可以在参数里添加**kwargs——简单来说目的是允许添加不定参数名称的参数,并作为字典传递参数.但前提是——你必须提供参数名. 例如下述情况: class C(): def ...