Little Ruins is playing a number game, first he chooses two positive integers yy and KK and calculates f(y,K)f(y,K), here

f(y,K)=∑z in every digits of yzK(f(233,2)=22+32+32=22)f(y,K)=∑z in every digits of yzK(f(233,2)=22+32+32=22)

then he gets the result

x=f(y,K)−yx=f(y,K)−y

As Ruins is forgetful, a few seconds later, he only remembers KK, xx and forgets yy. please help him find how many yy satisfy x=f(y,K)−yx=f(y,K)−y.

InputFirst line contains an integer TT, which indicates the number of test cases.

Every test case contains one line with two integers xx, KK.

Limits 
1≤T≤1001≤T≤100 
0≤x≤1090≤x≤109 
1≤K≤91≤K≤9OutputFor every test case, you should output 'Case #x: y', where x indicates the case number and counts from 1 and y is the result.Sample Input

2
2 2
3 2

Sample Output

Case #1: 1
Case #2: 2

题意:给定函数f(y,K)=∑y的所有位的K次幂,给出X,K,问多少个Y满足f(Y,K)=X;

思路:似乎没有什么思路,考虑暴力,估计Y只有10位,所以我们暴力前面5位,用map去寻找后面5位。

然而我开始些了离散化WA了,map过了。

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
unordered_map<ll,int>mp;
ll tot,cnt,f[][],K,a[maxn],X,ans,num[maxn];
int main()
{
int T,Cas=;
scanf("%lld",&T); rep(i,,) f[i][]=;
rep(i,,) rep(j,,) f[i][j]=f[i][j-]*i;
while(T--){
tot=cnt=; mp.clear();
scanf("%lld%lld",&X,&K); ans=;
rep(i,,)
rep(j,,)
rep(k,,)
rep(p,,)
rep(q,,){
ll t1=f[i][K]+f[j][K]+f[k][K]+f[p][K]+f[q][K],t2=i*+j*+k*+p*+q;
a[++tot]=t1-100000LL*t2; mp[t1-t2]++;
if(t1-t2==X) ans++;
}
rep(i,,tot) if(mp.find(X-a[i])!=mp.end())ans+=mp[X-a[i]];
printf("Case #%d: %lld\n",++Cas,ans-(X==));
}
return ;
}

错误代码(依然没有找到bug):

#include<bits/stdc++.h>
#define ll long long
#define rep(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int maxn=;
int Laxt[maxn],Next[maxn],tot,cnt,f[][],num[maxn]; ll a[maxn],To[maxn],X,ans,K;
int find(ll x){
ll t=(x%maxn+maxn)%maxn;
for(int i=Laxt[t];i;i=Next[i]) if(To[i]==x) return num[i];
return ;
}
void add(ll x){
if(x==X) ans++;
ll t=(x%maxn+maxn)%maxn;
for(int i=Laxt[t];i;i=Next[i]){
if(To[i]==x) { num[i]++; return ;}
}
Next[++cnt]=Laxt[t]; Laxt[t]=++cnt; To[cnt]=x; num[cnt]=;
}
int main()
{
int T,Cas=;
scanf("%lld",&T); rep(i,,) f[i][]=;
rep(i,,) rep(j,,) f[i][j]=f[i][j-]*i;
while(T--){
memset(Laxt,,sizeof(Laxt));
tot=cnt=;
scanf("%lld%lld",&X,&K); ans=;
rep(i,,)
rep(j,,)
rep(k,,)
rep(p,,)
rep(q,,){
ll t1=f[i][K]+f[j][K]+f[k][K]+f[p][K]+f[q][K],t2=i*+j*+k*+p*+q;
a[++tot]=t1-100000LL*t2; add(t1-t2);
}
rep(i,,tot) ans+=find(X-a[i]);
printf("Case #%d: %lld\n",++Cas,ans-(X==));
}
return ;
}

HDU - 5936: Difference(暴力:中途相遇法)的更多相关文章

  1. HDU 5936 Difference 【中途相遇法】(2016年中国大学生程序设计竞赛(杭州))

    Difference Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  2. 【UVALive】2965 Jurassic Remains(中途相遇法)

    题目 传送门:QWQ 分析 太喵了~~~~~ 还有中途相遇法这种东西的. 嗯 以后可以优化一些暴力 详情左转蓝书P58 (但可能我OI生涯中都遇不到正解是这个的题把...... 代码 #include ...

  3. LA 2965 中途相遇法

    题目链接:https://vjudge.net/problem/UVALive-2965 题意: 有很多字符串(24),选出一些字符串,要求这些字符串的字母都是偶数次: 分析: 暴力2^24也很大了, ...

  4. 紫书 习题 8-16 UVa 1618 (中途相遇法)

    暴力n的四次方, 然而可以用中途相遇法的思想, 分左边两个数和右边两个数来判断, 最后合起来判断. 一边是n平方logn, 合起来是n平方logn(枚举n平方, 二分logn) (1)两种比较方式是相 ...

  5. 【uva 1152】4 Values Whose Sum is Zero(算法效率--中途相遇法+Hash或STL库)

    题意:给定4个N元素几个A,B,C,D,要求分别从中选取一个元素a,b,c,d使得a+b+c+d=0.问有多少种选法.(N≤4000,D≤2^28) 解法:首先我们从最直接最暴力的方法开始思考:四重循 ...

  6. HDU 5936 Difference

    题意: 有一个函数f(y, k) = y的每个十进制位上的数字的k次幂之和 给x, k 求 有多少个y满足 x = f(y, k) - y 思路: (据说这叫中途相遇法?) 由于 x >= 0 ...

  7. uva 6757 Cup of Cowards(中途相遇法,貌似)

    uva 6757 Cup of CowardsCup of Cowards (CoC) is a role playing game that has 5 different characters (M ...

  8. LA 2965 Jurassic Remains (中途相遇法)

    Jurassic Remains Paleontologists in Siberia have recently found a number of fragments of Jurassic pe ...

  9. 【中途相遇法】【STL】BAPC2014 K Key to Knowledge (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  10. 高效算法——J 中途相遇法,求和

    ---恢复内容开始--- J - 中途相遇法 Time Limit:9000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Su ...

随机推荐

  1. ruby安装神器rvm,你造吗?

    以前的一篇文章介绍过如何安装ruby,叫做:如何安装/更新ruby,安装cocoapods,为开发做好准备!(2016年12月07日更新内容) 文章中讲到的方法依然可行,但是该方法繁琐并且可能会出现各 ...

  2. java @Retention元注解

    @Retention元注解 有三种取值:RetentionPolicy.SOURCE.RetentionPolicy.CLASS.RetentionPolicy.RUNTIME分别对应:Java源文件 ...

  3. 一年java程序员的感悟

    前沿 在小公司干了差不多一年,刚进来与一个中级程序员做交接,过了大概一个月,那个中级程序员走了,从此,走上了"泥泞"的道路(独立开发),熟悉了公司的项目和业务用了一个月左右,公司当 ...

  4. GIT使用—安装配置及工作流程

    一.Git 与 SVN 区别 GIT不仅仅是个版本控制系统,它也是个内容管理系统(CMS),工作管理系统等. 1.GIT是分布式的,SVN不是:这是GIT和其它非分布式的版本控制系统,例如SVN,CV ...

  5. Java套接字socket编程笔记

    相对于C和C++来说,Java中的socket编程是比较简单的,比较多的细节都已经被封装好了,每次创建socket连接只需要知道地址和端口即可. 在了解socket编程之前,我们先来了解一下读写数据的 ...

  6. Go语言学习之常量(The way to go)

    生命不止,继续go go go . 上一篇博客<Go语言学习之变量(The way to go)介绍了go中的变量,今天就介绍常量. const关键字 跟c++中一样,go中同样具有const关 ...

  7. ReactNative之Android打包APK方法(趟坑过程)

    欢迎大家加群讨论 点击链接加入群[ReactNative-解决问题交流群] :644124441 点击链接加入群[ReactNative技术交流群2] :687663534 多余的不解释了.直接上车吧 ...

  8. python标准库学习-ftplib

    源码: """An FTP client class and some helper functions. Based on RFC 959: File Transfer ...

  9. spring security结合数据库验证用户-注解方式

    项目目录结构如下: 首先数据库的建立和数据导入,以及一些类的依赖参考XML配置方式,需要修改一些配置. 一.在AppConfig文件中添加DataSource的配置 @Bean(name = &quo ...

  10. Android QRCodeReaderView 和Camera API冲突

    开发一款小功能,核心功能是二维码扫描,然后发送到远端服务器.App结构分为两个Activity,Activity A 负责二维码扫描,然后将参数存到本地,再启动Activity B,在Activity ...