简介:

  算法的特点: 
  弗洛伊德算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭 包。

算法思想:

通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入两个矩阵,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。矩阵P中的元素b[i][j],表示顶点i到顶点j经过了b[i][j]记录的值所表示的顶点。

假设图G中顶点个数为N,则需要对矩阵D和矩阵P进行N次更新。初始时,矩阵D中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞,矩阵P的值为顶点b[i][j]的j的值。 接下来开始,对矩阵D进行N次更新。第1次更新时,如果”a[i][j]的距离” > “a[i][0]+a[0][j]”(a[i][0]+a[0][j]表示”i与j之间经过第1个顶点的距离”),则更新a[i][j]为”a[i][0]+a[0][j]”,更新b[i][j]=b[i][0]。 同理,第k次更新时,如果”a[i][j]的距离” > “a[i][k-1]+a[k-1][j]”,则更新a[i][j]为”a[i][k-1]+a[k-1][j]”,b[i][j]=b[i][k-1]。更新N次之后,操作完成!

举个例子:已知下图,

  如现在只允许经过1号顶点,求任意两点之间的最短路程,只需判断e[i][1]+e[1][j]是否比e[i][j]要小即可。e[i][j]表示的是从i号顶点到j号顶点之间的路程。e[i][1]+e[1][j]表示的是从i号顶点先到1号顶点,再从1号顶点到j号顶点的路程之和。其中i是1~n循环,j也是1~n循环,代码实现如下。

; i<=n; i++)
{
    ; j<=n; j++)
    {
        ]+e[][j] )
            e[i][j] = e[i][]+e[][j];
    }
}

  接下来继续求在只允许经过1和2号两个顶点的情况下任意两点之间的最短路程。在只允许经过1号顶点时任意两点的最短路程的结果下,再判断如果经过2号顶点是否可以使得i号顶点到j号顶点之间的路程变得更短。即判断e[i][2]+e[2][j]是否比e[i][j]要小,代码实现为如下。

//经过1号顶点
; i<=n; i++)
    ; j<=n; j++)
        ]+e[][j])
            e[i][j]=e[i][]+e[][j];
//经过2号顶点
; i<=n; i++)
    ; j<=n; j++)
        ]+e[][j])
            e[i][j]=e[i][]+e[][j];

  最后允许通过所有顶点作为中转,代码如下:

for(k=1; k<=n; k++)
    for(i=1; i<=n; i++)
        for(j=1; j<=n; j++)
            if(e[i][j]>e[i][k]+e[k][j])
                e[i][j]=e[i][k]+e[k][j];

这段代码的基本思想就是:最开始只允许经过1号顶点进行中转,接下来只允许经过1和2号顶点进行中转……允许经过1~n号所有顶点进行中转,求任意两点之间的最短路程。与上面相同

核心代码:

    ; k<=n; k++)
        ; i<=n; i++)
            ; j<=n; j++)
                if(map[i][j]>map[i][k]+map[k][j])
                    map[i][j]=map[i][k]+map[k][j];

最短路-Floyd的更多相关文章

  1. ACM/ICPC 之 最短路-Floyd+SPFA(BFS)+DP(ZOJ1232)

    这是一道非常好的题目,融合了很多知识点. ZOJ1232-Adventrue of Super Mario 这一题折磨我挺长时间的,不过最后做出来非常开心啊,哇咔咔咔 题意就不累述了,注释有写,难点在 ...

  2. 模板C++ 03图论算法 2最短路之全源最短路(Floyd)

    3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...

  3. 最短路 - floyd算法

    floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...

  4. HDU1869---(最短路+floyd)

    http://acm.hdu.edu.cn/showproblem.php?pid=1869 思路:最短路+floyd 分析:1 题目是要求所有的数据能否满足“六度分离”,那么我们就想到所有点之间的最 ...

  5. 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...

  6. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  7. poj 3613 经过k条边最短路 floyd+矩阵快速幂

    http://poj.org/problem?id=3613 s->t上经过k条边的最短路 先把1000范围的点离散化到200中,然后使用最短路可以使用floyd,由于求的是经过k条路的最短路, ...

  8. 最短路--floyd算法模板

    floyd算法是求所有点之间的最短路的,复杂度O(n3)代码简单是最大特色 #include<stdio.h> #include<string.h> ; const int I ...

  9. poj 3216 Repairing Company(最短路Floyd + 最小路径覆盖 + 构图)

    http://poj.org/problem?id=3216 Repairing Company Time Limit: 1000MS   Memory Limit: 131072K Total Su ...

  10. Cogs 309. [USACO 3.2] 香甜的黄油 dijkstra,堆,最短路,floyd

    题目:http://cojs.tk/cogs/problem/problem.php?pid=309 309. [USACO 3.2] 香甜的黄油 ★★   输入文件:butter.in   输出文件 ...

随机推荐

  1. HDU1024 最大m子段和

    Max Sum Plus Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. Qt ------- QByteArray操作注意

    使用QByteArray方法把数据存入QByteArray需要是char型数据,如果需要存入无符号8位数据,如下: QByteArray data; data[0] = 0xFF; 即使通过data[ ...

  3. SQL Server2000安装教程图解

    sql2000安装教程图解... ================================= 第一部分:下载所需要的安装包: 可以自己在网上百度了之后下载--或是直接从我已打包好的群里下载 = ...

  4. mysql按月统计六个月内不同类型订单的成交金额

    mysql按月统计六个月内不同类型订单的成交金额 创建数据库 CREATE DATABASE test; 创建订单表 CREATE TABLE `t_order` ( `id` ) NOT NULL ...

  5. mysql binlog日志手动清除

    purge binary logs to 'mysql-bin.000050'; set global expire_logs_days=7; flush logs;

  6. gitlab通过api创建组、项目、成员

    前戏 获取gitlab中admin用户的private_token Groups API 获取某个组的详细 curl --header "PRIVATE-TOKEN: *********&q ...

  7. win10以前连接过的wifi密码怎么查看

    右键点击开始,在菜单中选择打开命令提示符,以管理员的权限打开.  然后输入命令netsh wlan show profile显示以前此电脑连接过的所有WIFI记录配置信息.    确定要查看的WIFI ...

  8. kolakoski序列

                   搜狐笔试=.= 当时少想一个slow的指针..呜呜呜哇的一声哭出来 function kolakoski(token0, token1) { token0 = token ...

  9. vim 实现括号以及引号的自动补全

    编辑文件/etc/vim/vimrc sudo vim /etc/vim/vimrc 在最后添加 inoremap ( ()<ESC>i inoremap [ []<ESC>i ...

  10. 实战手工注入某站,mssql注入

    昨天就搞下来的,但是是工具搞得,为了比赛还是抛弃一阵子的工具吧.内容相对简单,可掠过. 报错得到sql语句: DataSet ds2 = BusinessLibrary.classHelper.Get ...