【BZOJ】1385 [Baltic2000]Division expression
【算法】欧几里德算法
【题解】紫书原题
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=;
int T,t,n,a[maxn];
int gcd(int a,int b)
{return b==?a:gcd(b,a%b);}
int main()
{
scanf("%d",&T);
for(int i=;i<=T;i++)
{
scanf("%d%d%d",&n,&a[],&t);
for(int i=;i<n;i++)scanf("%d",&a[i]);
for(int i=;i<n;i++)
{
t/=gcd(a[i],t);
if(t==)break;
}
if(t==)printf("YES\n");else printf("NO\n");
}
return ;
}
【BZOJ】1385 [Baltic2000]Division expression的更多相关文章
- BZOJ 1385: [Baltic2000]Division expression
题目 1385: [Baltic2000]Division expression Time Limit: 5 Sec Memory Limit: 64 MB Description 除法表达式有如下 ...
- bzoj 1385: [Baltic2000]Division expression【脑洞】
加括号再去括号就是除变加,显然尽可能多的除变加是最优的,然后发现唯一不能变成乘数的是第二个数,所以把其他数乘起来mod第二个数,如果是0就是YES,否则说明最后不能除尽,就是NO #include&l ...
- bzoj1385: [Baltic2000]Division expression
欧几里得算法.可以发现规律,a[2]作为分母,其他作为分子,必定是最好的选择.判断是否为整数即可. #include<cstdio> #include<cstring> #in ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- 【BZOJ】【3083】遥远的国度
树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...
随机推荐
- Javascript动态方法调用与参数修改的问题
Javascript中可以对所传参数在函数内进行修改,如下 ? 1 2 3 4 5 function func1(name) { name = 'lily'; alert(name); ...
- Swift-可选值(Optional)讲解
前提:Swift中有规定:对象中的任何属性在创建时,都必须要有明确的初始化值 1.定义可选类型 方式一:常规方式(不常用) var name : Optional<String> = ni ...
- WIN8/8.1/10进入BIOS方法图解
1.首先点击桌面左下角的"开始". 2.然后点击电源. 3.然后按住shift,同时点击"重启".于是进入这个画面: 4.然后点击"疑难解答" ...
- WDCP V3.2面板安装且新增PHP多版本和免费Let's Encrypt SSL证书
文章原文:http://www.itbulu.com/wdcp-v32.html 我们很多网友对于WDCP面板应该算是比较熟悉的,老蒋在博客中也多次分享WDCP面板的相关教程内容,因为在平时帮助网友解 ...
- Activiti5工作流笔记一
介绍工作流 网上工作流的定义一大堆,这里就不去复制了,通俗的理解,工作流就是类似OA系统中请假审批.报销审批等一系列流程,下级提交的申请只有直系领导才能审批,其他人是没有权限的,而只有直系领导审批通过 ...
- 当线程是继承Thread时候 实现方法是静态方法时候 可以用锁修饰静态方法 此时锁对象是类 为啥继承的线程要用 类对象呢 因为他能生成很多实例 接口实现为啥用this 呢因为他就一个
- 【bzoj2502】清理雪道 有上下界最小流
题目描述 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞 ...
- BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...
- NetScaler VLAN’s Demystified
NetScaler VLAN’s Demystified https://www.citrix.com/blogs/2014/12/29/netscaler-vlans-demystified/ Th ...
- ACM数学
1.burnside定理,polya计数法 这个专题我单独写了个小结,大家可以简单参考一下:polya 计数法,burnside定理小结 2.置换,置换的运算 置换的概念还是比较好理解的,< ...