bzoj 4488 [Jsoi2015]最大公约数 结论+暴力
[Jsoi2015]最大公约数
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 302 Solved: 169
[Submit][Status][Discuss]
Description
给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列
{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ∗ gcd (Al..Ar)。
JYY 希望找出权值最大的子序列。
Input
输入一行包含一个正整数 N。
接下来一行,包含 N个正整数,表示序列Ai
1 < = Ai < = 10^12, 1 < = N < = 100,000
Output
输出文件包含一行一个正整数,表示权值最大的子序列的权值。
Sample Input
30 60 20 20 20
Sample Output
//最佳子序列为最后 4 个元素组成的子序列。
HINT
Source
题解:有一个结论,一个序列的gcd最多只有log个,
因为最多只有log个,所以可以直接暴力,判断包涵当前这个点的公约数,然后统计所有的答案,同样的公约数当然位置越前面越好。
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<map> #define zz map<ll,ll>::iterator
#define ll long long
#define N 100007
#define ll long long
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n;
ll a[N],ans;
map<ll,ll>p1,p2; ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
int main()
{
n=read();
for (int i=;i<=n;i++)
{
a[i]=read(),ans=max(ans,a[i]);
for (zz it=p1.begin();it!=p1.end();it++)
{
ll g=gcd((*it).first,a[i]);
ans=max(ans,g*((ll)i-(*it).second+1ll));
if (!p2.count(g)) p2[g]=(*it).second;
else p2[g]=min(p2[g],(*it).second);
}
if (!p2.count(a[i])) p2[a[i]]=i;
p1=p2;
p2.clear();
}
printf("%lld\n",ans);
}
bzoj 4488 [Jsoi2015]最大公约数 结论+暴力的更多相关文章
- BZOJ 4488: [Jsoi2015]最大公约数 暴力 + gcd
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列 {Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L, ...
- [BZOJ 4488][Jsoi2015]最大公约数
传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...
- BZOJ.4151.[AMPPZ2014]The Cave(结论)
BZOJ 不是很懂他们为什么都要DFS三次.于是稳拿Rank1 qwq. (三道题两个Rank1一个Rank3效率是不是有点高qwq?) 记以\(1\)为根DFS时每个点的深度是\(dep_i\).对 ...
- BZOJ4488: [Jsoi2015]最大公约数
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...
- BZOJ 3339 & 莫队+"所谓的暴力"
题意: 给一段数字序列,求一段区间内未出现的最小自然数. SOL: 框架显然用莫队.因为它兹瓷离线. 然而在统计上我打了线段树...用&维护的结点...400w的线段树...然后二分查找... ...
- Codeforces.1028F.Make Symmetrical(结论 暴力)
题目链接 \(Description\) \(q\)次操作,每次给定点的坐标\((x,y)\),表示加入一个点\((x,y)\),或删除一个点\((x,y)\),或询问:至少需要在平面中加入多少个点, ...
- bzoj 4725 [POI2017]Reprezentacje ró?nicowe 暴力
[POI2017]Reprezentacje ró?nicowe Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 141 Solved: 67[Sub ...
- BZOJ - 4066 KD树 范围计数 暴力重构
题意:单点更新,大矩阵(\(n*n,n≤10^5\))求和 二维的KD树能使最坏情况不高于\(O(N\sqrt{N})\) 核心在于query时判断当前子树维护的区间是否有交集/当前子节点是否在块中, ...
- BZOJ4488 JSOI2015最大公约数
显然若右端点确定,gcd最多变化log次.容易想到对每一种gcd二分找最远端点,但这样就变成log^3了.注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂.由于区间只有 ...
随机推荐
- loadrunner_遇到cookie接口_3种应对方法
方法一:是调用登录接口,在调用登录后的接口 方法二:手动储存cookie,写死cookie 方法一:提前登录收集cookie,写成参数化文件 方法一,案例(就是先登录,再写登录后的接口): 注:use ...
- 代码对齐 (Alignment of Code,ACM/ICPC NEERC 2010,UVa1593)
题目描述: 解题思路: 输入时提出单个字符串,并用一个数组记录每列最长长度,格式化输出 #include <iostream> #include <algorithm> #in ...
- [Clr via C#读书笔记]Cp6类型和成员基础
Cp6类型和成员基础 成员 常量:字段(静态字段和实例字段):实例构造器:类型构造器(用于静态字段的构造):方法(静态方法和实例方法):操作符重载(本质是一个方法):转换操作符:属性(本质还是方法): ...
- 有个AI陪你一起写代码,是种怎样的体验?| 附ICLR论文
从前,任何程序的任何功能,都需要一行一行敲出来. 后来,程序猿要写的代码越来越多,世界上便有了各种各样的API,来减少大家的工作量.有些功能,可以让API来帮我们实现. 不过,人类写下的话,API并不 ...
- 上层应用与wpa_supplicant,wpa_supplicant与kernel 相关socket创建交互分析
单独拿出来,分析以下上层应用与wpa_supplicant wpa_supplicant与kernel 的socket交互. 关联上层应用与wpa_supplicant的socket的创建.连接流 ...
- 第三课——MFC编程
一.MFC概述 1. MFC简述 MFC不仅仅是一套基础类库,更是一种编程方式. 2. MFC由来 1987年微软公司推出了第一代Windows产品,并为应用程序设计者提供了Win16(16位Wind ...
- 《梦断代码Dreaming In Code》阅读笔记(三)
最后这几章感觉上更多是从软件完成整体上来讲的.比如说技术.方法等. 在我看来,其实一个团队一直坚持一种好的.先进的方法是不可少的.如果一个优秀的团队刚愎自用,只随着成员们喜好发展,那不能长久.比如说, ...
- .getClass()和.class的区别
一直在想.class和.getClass()的区别,思索良久,有点思绪,然后有网上搜了搜,找到了如下的一篇文章,与大家分享. 原来为就是涉及到java的反射----- Java反射学习 所谓反射,可以 ...
- LintCode-5.第k大元素
第k大元素 在数组中找到第k大的元素 注意事项 你可以交换数组中的元素的位置 样例 给出数组 [9,3,2,4,8],第三大的元素是 4 给出数组 [1,2,3,4,5],第一大的元素是 5,第二大的 ...
- udf.dll 源码
一点关于UDF的发散思路 Author:mer4en7y Team:90sec 声明:UDF源码作者langouster 相信各位牛对UDF都不会陌生,看论坛叶总共享了一份UDF源码,以前一直没看过, ...