bzoj 4488 [Jsoi2015]最大公约数 结论+暴力
[Jsoi2015]最大公约数
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 302 Solved: 169
[Submit][Status][Discuss]
Description
给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列
{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R) = (R-L+1) ∗ gcd (Al..Ar)。
JYY 希望找出权值最大的子序列。
Input
输入一行包含一个正整数 N。
接下来一行,包含 N个正整数,表示序列Ai
1 < = Ai < = 10^12, 1 < = N < = 100,000
Output
输出文件包含一行一个正整数,表示权值最大的子序列的权值。
Sample Input
30 60 20 20 20
Sample Output
//最佳子序列为最后 4 个元素组成的子序列。
HINT
Source
题解:有一个结论,一个序列的gcd最多只有log个,
因为最多只有log个,所以可以直接暴力,判断包涵当前这个点的公约数,然后统计所有的答案,同样的公约数当然位置越前面越好。
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<map> #define zz map<ll,ll>::iterator
#define ll long long
#define N 100007
#define ll long long
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n;
ll a[N],ans;
map<ll,ll>p1,p2; ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
int main()
{
n=read();
for (int i=;i<=n;i++)
{
a[i]=read(),ans=max(ans,a[i]);
for (zz it=p1.begin();it!=p1.end();it++)
{
ll g=gcd((*it).first,a[i]);
ans=max(ans,g*((ll)i-(*it).second+1ll));
if (!p2.count(g)) p2[g]=(*it).second;
else p2[g]=min(p2[g],(*it).second);
}
if (!p2.count(a[i])) p2[a[i]]=i;
p1=p2;
p2.clear();
}
printf("%lld\n",ans);
}
bzoj 4488 [Jsoi2015]最大公约数 结论+暴力的更多相关文章
- BZOJ 4488: [Jsoi2015]最大公约数 暴力 + gcd
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列 {Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L, ...
- [BZOJ 4488][Jsoi2015]最大公约数
传送门 不知谁说过一句名句,我们要学会复杂度分析 #include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for( ...
- BZOJ.4151.[AMPPZ2014]The Cave(结论)
BZOJ 不是很懂他们为什么都要DFS三次.于是稳拿Rank1 qwq. (三道题两个Rank1一个Rank3效率是不是有点高qwq?) 记以\(1\)为根DFS时每个点的深度是\(dep_i\).对 ...
- BZOJ4488: [Jsoi2015]最大公约数
Description 给定一个长度为 N 的正整数序列Ai对于其任意一个连续的子序列{Al,Al+1...Ar},我们定义其权值W(L,R )为其长度与序列中所有元素的最大公约数的乘积,即W(L,R ...
- BZOJ 3339 & 莫队+"所谓的暴力"
题意: 给一段数字序列,求一段区间内未出现的最小自然数. SOL: 框架显然用莫队.因为它兹瓷离线. 然而在统计上我打了线段树...用&维护的结点...400w的线段树...然后二分查找... ...
- Codeforces.1028F.Make Symmetrical(结论 暴力)
题目链接 \(Description\) \(q\)次操作,每次给定点的坐标\((x,y)\),表示加入一个点\((x,y)\),或删除一个点\((x,y)\),或询问:至少需要在平面中加入多少个点, ...
- bzoj 4725 [POI2017]Reprezentacje ró?nicowe 暴力
[POI2017]Reprezentacje ró?nicowe Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 141 Solved: 67[Sub ...
- BZOJ - 4066 KD树 范围计数 暴力重构
题意:单点更新,大矩阵(\(n*n,n≤10^5\))求和 二维的KD树能使最坏情况不高于\(O(N\sqrt{N})\) 核心在于query时判断当前子树维护的区间是否有交集/当前子节点是否在块中, ...
- BZOJ4488 JSOI2015最大公约数
显然若右端点确定,gcd最多变化log次.容易想到对每一种gcd二分找最远端点,但这样就变成log^3了.注意到右端点右移时,只会造成一些gcd区间的合并,原本gcd相同的区间不可能分裂.由于区间只有 ...
随机推荐
- 机器学习介绍(introduction)-读书笔记-
一,什么是机器学习 第一个机器学习的定义来自于 Arthur Samuel.他定义机器学习为,在进行特定编程的情况下,给予计算机学习能力的领域.Samuel 的定义可以回溯到 50 年代,他编写了一个 ...
- FPGA学习-PS2接口
选自http://m.elecfans.com/article/774143.html
- priority_queue(优先队列):排序不去重
C++优先队列类似队列,但是在这个数据结构中的元素按照一定的断言排列有序. 头文件:#include<queue> 参数:priority_queue<Type, Container ...
- Hadoop第二课:Hadoop集群环境配置
一.Yum配置 1.检查Yum是否安装 rpm -qa|grep yum 2.修改yum源,我使用的是163的镜像源(http://mirrors.163.com/),根据自己的系统选择源, #进入目 ...
- Java学习个人备忘录之文档注释
文档注释 单行注释用 // 多行注释有两种,第一种是 /* 内容 */,第二种是/** 内容 */. 这两种多行注释的区别是/** 内容 */这种注释可以生成一个该文件的注释文档,下面是演示代码. A ...
- 总结python 元组和列表的区别
python的基本类型中有元组和列表这么俩个,但是这哥俩却比较难于区分,今天就来用简单的实例说明两者的不同. 列表:1.使用中括号([ ])包裹,元素值和个数可变 实例: aaa = ['sitena ...
- 如何修改git push时的密码
如何修改git push时的密码 如下: 打开git bash 输入 cd ~/.ssh ls 确定有 id_rsa 和 id_rsa.pub文件 ssh-keygen -p -f id_rsa 第一 ...
- GPS定位,根据经纬度查询附近地点的经纬度-sql方法实现
根据当前所在的坐标点也即经纬度,查找数据库中附近5公里或10公里附近的所有信息的实现,经过查找资料,原来是我高二学的,就是求弦长,数学忘完了,没想到数学还这么有用,数学啊 真是用途太大了. 用到的什么 ...
- python urllib使用
Urllib是python内置的HTTP请求库包括以下模块urllib.request 请求模块urllib.error 异常处理模块urllib.parse url解析模块urllib.robotp ...
- git工具SourceTree工作流
分支模型 master 用来最终上线的分支,最终发布版本,整个项目中有且只有一个 develop 项目中用来开发的分支,原则上项目中有且只有一个,develop 分支下面的分支是经常变化的,会创建新的 ...