这题还挺对胃口的哈哈~是喜欢的画风!回家路上一边听歌一边想到的解法,写出来记录一下……

 首先,由于 \(b_{k} < a_{k + 1}\) ,所以我们可以看作是在一个长度为 n 的序列上选择出 k 个不相交的区间使得这 k个区间的长度各不相同。那么我们可以先求出 \(f[i][j]\) 表示选择了 \(i\) 个区间,这 \(i\) 个区间的区间长度总和为 \(j\) 的方案数。然后,我们考虑用这些方案数与序列剩下的长度的划分的方案数共同构成答案。所以我们再求一个 \(g[i][j]\) 表示将 \(j\) 的长度划分成可空的 \(i\) 段的方案数。答案 \(h[k][n]\) 表示在长为 n 的序列上选出了 \(k\) 个不相交,各不相同的区间的方案数。有了 \(f,g\)数组,我们只需要枚举一下选择的区间总长 i,将 \(f[k][i] * g[k + 2][n - i]\) 加到答案中即可。

  但是,这样做不是 \(1000^{3}\) 的的吗?实际上,k 的取值范围远不可能到达 1000。由于区间的长度各不相同,我们不难求出当 \(k >= 45\) 的时候答案为 0,并不需要计算。这样,我们就可以在优秀的 \(5e7\) 的复杂度下通过此题~

#include <bits/stdc++.h>
using namespace std;
#define maxn 1010
#define maxm 100000
#define maxk 50
#define mod 1000000007
#define int long long
int N = , lim = , h[maxn][maxn];
int t[][maxk][maxn], f[maxk][maxn], g[maxk][maxn];
int fac[maxm], inv[maxm]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} int C(int n, int m)
{
if(n < m || n < || m < ) return ;
return fac[n] * inv[m] % mod * inv[n - m] % mod;
} void pre()
{
fac[] = ; inv[] = inv[] = ;
for(int i = ; i < maxm; i ++) fac[i] = fac[i - ] * i % mod;
for(int i = ; i < maxm; i ++) inv[i] = (mod - mod / i) * inv[mod % i] % mod;
for(int i = ; i < maxm; i ++) inv[i] = inv[i - ] * inv[i] % mod;
} void Up(int &x, int y) { x = x + y; if(x >= mod) x -= mod; }
void Work()
{
int pre = , now = ; t[pre][][] = ;
for(int i = ; i <= N; i ++)
{
memset(t[now], , sizeof(t[now]));
for(int k = ; k <= lim; k ++)
for(int j = ; j <= N; j ++)
{
t[now][k][j] = t[pre][k][j];
if(k && j - i >= ) Up(t[now][k][j], t[pre][k - ][j - i]);
}
swap(pre, now);
}
for(int i = ; i <= lim; i ++)
for(int j = ; j <= N; j ++)
f[i][j] = t[pre][i][j] * fac[i] % mod;
for(int i = ; i <= lim; i ++) g[i][] = ;
for(int i = ; i <= lim; i ++)
for(int j = ; j <= N; j ++)
g[i][j] = C(i + j - , j); for(int i = ; i <= lim; i ++)
for(int j = ; j < N; j ++)
{
int ret = ;
for(int k = ; k <= j; k ++)
Up(ret, f[i][k] * g[i + ][j - k] % mod);
h[i][j] = ret;
}
} signed main()
{
pre(); Work(); int T = read();
while(T --)
{
int n = read(), K = read();
if(K <= lim) printf("%I64d\n", h[K][n]);
else printf("0\n");
}
return ;
}

【题解】CF#403 D-Beautiful Pairs of Numbers的更多相关文章

  1. CF 403D Beautiful Pairs of Numbers

    The sequence of integer pairs (a1, b1), (a2, b2), ..., (ak, bk) is beautiful, if the following state ...

  2. [CF403D]Beautiful Pairs of Numbers

    题意:给定$n,k$,对于整数对序列$\left(a_1,b_1\right),\cdots,\left(a_k,b_k\right)$,如果$1\leq a_1\leq b_1\lt a_2\leq ...

  3. Codeforces 403D: Beautiful Pairs of Numbers(DP)

    题意:转换模型之后,就是1~n个数中选k个,放到一个容量为n的背包中,这个背包还特别神奇,相同的物品摆放的位置不同时,算不同的放法(想象背包空间就是一个长度为n的数组,然后容量为1的物体放一个格子,容 ...

  4. cf 403 D

    D. Beautiful Pairs of Numbers time limit per test 3 seconds memory limit per test 256 megabytes inpu ...

  5. CF 55 D. Beautiful numbers

    D. Beautiful numbers 链接 题意: 求[L,R]中多少个数字可以整除它们的每一位上的数字. 分析: 要求模一些数字等于0等价于模它们的lcm等于0,所以可以记录当前出现的数字的lc ...

  6. Codeforces CF#628 Education 8 D. Magic Numbers

    D. Magic Numbers time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  7. 竞赛题解 - CF Round #524 Div.2

    CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...

  8. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)

    还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...

  9. 【题解】 Codeforces 919F A Game With Numbers(拓扑排序+博弈论+哈希)

    懒得复制,戳我戳我 Solution: 我感觉我也说不太好,看Awson的题解吧. 说一点之前打错的地方: 连边存的是hash后的数组下标 if(ans[ num( C[a.hash()] , C[b ...

随机推荐

  1. Spark入门(Python版)

    Hadoop是对大数据集进行分布式计算的标准工具,这也是为什么当你穿过机场时能看到”大数据(Big Data)”广告的原因.它已经成为大数据的操作系统,提供了包括工具和技巧在内的丰富生态系统,允许使用 ...

  2. P1011 车站

    P1011 车站 题目描述 火车从始发站(称为第1站)开出,在始发站上车的人数为a,然后到达第2站,在第2站有人上.下车,但上.下车的人数相同,因此在第2站开出时(即在到达第3站之前)车上的人数保持为 ...

  3. hive整合sentry,impala,hue之后权限管理操作

    7.Hive授权参考(开启sentry之后,对用户授权用不了,只能针对用户组,grant role testrole to user xxxxxxx; ) 7.1:角色创建和删除 create rol ...

  4. springBoot cache操作2

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zxd1435513775/article/details/85091793一.基本项目搭建测试项目是 ...

  5. Spring全局变量

    压测spring框架的webservice接口,大并发量下响应值与预期值不一致 经查,开发在类中使用全局变量导致: springmvc核心控制器DispatcherServlet 默认为每个contr ...

  6. 初学Direct X(9) ——文字的显示

    初学Direct X(9) --文字的显示 本次学习如何使用ID3DXFont创建字体,使得我们可以在任何安装了Windows系统中TrueType字体来打印文字,不过最好使用标准字体,这样文字在每一 ...

  7. spring boot 报错 Error creating bean with name

    Application 启动类 要和父目录平级

  8. lintcode50 数组剔除元素后的乘积

    数组剔除元素后的乘积 给定一个整数数组A. 定义B[i] = A[0] * ... * A[i-1] * A[i+1] * ... * A[n-1], 计算B的时候请不要使用除法. 您在真实的面试中是 ...

  9. 解析Java中final关键字的各种用法

    首先,我们可以从字面上理解一下final这个英文单词的中文含义:“最后的,最终的; 决定性的; 不可更改的:”.显然,final关键词如果用中文来解释,“不可更改的”更为合适.当你在编写程序,可能会遇 ...

  10. 油田 (Oil Deposits UVA - 572)

    题目描述: 原题:https://vjudge.net/problem/UVA-572 题目思路: 1.图的DFS遍历 2.二重循环找到相邻的八个格子 AC代码: #include <iostr ...