Strip
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right.

Now Alexandra wants to split it into some pieces (possibly 1). For each piece of strip, it must satisfy:

  • Each piece should contain at least l numbers.
  • The difference between the maximal and the minimal number on the piece should be at most s.

Please help Alexandra to find the minimal number of pieces meeting the condition above.

Input

The first line contains three space-separated integers n, s, l (1 ≤ n ≤ 105, 0 ≤ s ≤ 109, 1 ≤ l ≤ 105).

The second line contains n integers ai separated by spaces ( - 109 ≤ ai ≤ 109).

Output

Output the minimal number of strip pieces.

If there are no ways to split the strip, output -1.

Examples
input
7 2 2
1 3 1 2 4 1 2
output
3
input
7 2 2
1 100 1 100 1 100 1
output
-1
Note

For the first sample, we can split the strip into 3 pieces: [1, 3, 1], [2, 4], [1, 2].

For the second sample, we can't let 1 and 100 be on the same piece, so no solution exists.

【题意】给你一个序列,让你分成若干份,对于每一份,要求最大值-最小值<=s,且每一份长度不小于L。求分得的最小份数,若不可分,输出-1.

【分析】考虑DP,dp[i]代表1~i分得的最小份数,则dp[i]=min(dp[j])+1,j当然得满足条件,首先i-j+1>=L,然后max[j,i]-min[j,i]<=s,考虑到区间最大值-最小值具有单调性,所以二分极限的j,然后判断一下j的可行性,可由j-1~i-L之间的最小dp值转移过来。区间最大最小值用RMQ,线段树维护区间dp最小值。

#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e5+;;
const int M = ;
const int mod = 1e9+;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,len,s;
int dp[N];
int a[N],mi[N*];
int mn[N][],mx[N][],mm[N];
void init() {
for(int j=; j<=mm[n]; ++j) {
for(int i=; i+(<<j)-<=n; ++i) {
mn[i][j]=min(mn[i][j-],mn[i+(<<(j-))][j-]);
mx[i][j]=max(mx[i][j-],mx[i+(<<(j-))][j-]);
}
}
}
int getmx(int l,int r) {
int k = mm[r-l+];
return max(mx[l][k],mx[r-(<<k)+][k]);
}
int getmn(int l,int r) {
int k = mm[r-l+];
return min(mn[l][k],mn[r-(<<k)+][k]);
}
void upd(int l,int r,int rt,int pos){
if(l==r){
mi[rt]=dp[l];
return;
}
int mid=(l+r)>>;
if(pos<=mid)upd(l,mid,rt<<,pos);
else upd(mid+,r,rt<<|,pos);
mi[rt]=min(mi[rt<<],mi[rt<<|]);
}
int qry(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R){
return mi[rt];
}
int ret=inf,mid=(l+r)>>;
if(L<=mid)ret=min(ret,qry(L,R,l,mid,rt<<));
if(R>mid)ret=min(ret,qry(L,R,mid+,r,rt<<|));
return ret;
}
void solve(int pos){
int l=,r=pos,ans=-;
while(l<=r){
int mid=(l+r)>>;
int minn=getmn(mid,pos);
int maxn=getmx(mid,pos);
if(maxn-minn<=s)r=mid-,ans=mid;
else l=mid+;
}
if(ans==-||pos-ans+<len)dp[pos]=inf;
else if(ans==)dp[pos]=;
else dp[pos]=qry(max(ans-,),pos-len,,n,)+;
}
int main(){
mm[]=-;
for(int i=; i<N; ++i)mm[i]=(i&(i-))?mm[i-]:mm[i-]+;
scanf("%d%d%d",&n,&s,&len);
for(int i=;i<=n;i++)scanf("%d",&a[i]),mn[i][]=mx[i][]=a[i];
init();
met(dp,inf);
for(int i=;i<=n;i++){
if(i<len)dp[i]=inf;
else solve(i);
upd(,n,,i);
}
if(dp[n]>=inf)puts("-1");
else printf("%d\n",dp[n]);
return ;
}

Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)的更多相关文章

  1. Codeforces Round #530 (Div. 2) F 线段树 + 树形dp(自下往上)

    https://codeforces.com/contest/1099/problem/F 题意 一颗n个节点的树上,每个点都有\(x[i]\)个饼干,然后在i节点上吃一个饼干的时间是\(t[i]\) ...

  2. Codeforces Round #426 (Div. 2) D 线段树优化dp

    D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...

  3. Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)

    题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...

  4. Nastya Hasn't Written a Legend(Codeforces Round #546 (Div. 2)E+线段树)

    题目链接 传送门 题面 题意 给你一个\(a\)数组和一个\(k\)数组,进行\(q\)次操作,操作分为两种: 将\(a_i\)增加\(x\),此时如果\(a_{i+1}<a_i+k_i\),那 ...

  5. Codeforces Round #422 (Div. 2) E. Liar 后缀数组+RMQ+DP

    E. Liar     The first semester ended. You know, after the end of the first semester the holidays beg ...

  6. Codeforces Round #267 (Div. 2) C. George and Job(DP)补题

    Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...

  7. Codeforces Round #278 (Div. 1) B. Strip multiset维护DP

    B. Strip Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/487/problem/B De ...

  8. Educational Codeforces Round 6 E dfs序+线段树

    题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...

  9. Codeforces Round #278 (Div. 2) D. Strip 线段树优化dp

    D. Strip time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...

随机推荐

  1. C11简洁之道:lambda表达式

    1.  定义 lambda表达式是C++11非常重要也是很常用的特性之一,来源于函数式编程的概念,也是现代编程语言的一个特点.它有如下特点: 声明式编程风格:就地匿名定义目标函数或者函数,不需要额外写 ...

  2. php trait 变量类型为数组时 不能被父类子类同时use

    直接上代码 --------------------------- trait T1 { public static $a=1; public static $b= []; public static ...

  3. 透彻理解Spring事务设计思想之手写实现(山东数漫江湖)

    前言 事务,是描述一组操作的抽象,比如对数据库的一组操作,要么全部成功,要么全部失败.事务具有4个特性:Atomicity(原子性),Consistency(一致性),Isolation(隔离性),D ...

  4. 大聊Python-----网络编程

    什么是Socket? socket本质上就是在2台网络互通的电脑之间,架设一个通道,两台电脑通过这个通道来实现数据的互相传递. 我们知道网络 通信 都 是基于 ip+port 方能定位到目标的具体机器 ...

  5. js_返回上一页(兼容苹果手机)

    返回上一页功能是常见的功能. 常用的有以下三种代码: window.history.go(-1); //返回上一页 window.history.back(); //返回上一页 //如果要强行刷新的话 ...

  6. Linux中断(interrupt)子系统之二:arch相关的硬件封装层【转】

    转自:http://blog.csdn.net/droidphone/article/details/7467436 Linux的通用中断子系统的一个设计原则就是把底层的硬件实现尽可能地隐藏起来,使得 ...

  7. device tree --- #interrupt-cells property

    device tree source Example1 interrupt-controller@e000e100 { ... ... #interrupt-cells = <0x1>; ...

  8. smb windows中使用的文件共享协议(主要用于与windows互通)

    主要是samba服务. SMB协议又成为CIFS(Common Internet File System)协议 samba服务功能: 1文件共享 2打印共享 3加入windows2000/2003/2 ...

  9. 如何更新远程主机上的 Linux 内核

    如何更新远程主机上的 Linux 内核 http://blog.csdn.net/robertsong2004/article/details/47277121 转载至:http://www.tiny ...

  10. 在64位linux下编译32位程序

    在64位linux下编译32位程序 http://blog.csdn.net/xsckernel/article/details/38045783