Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)
1 second
256 megabytes
standard input
standard output
Alexandra has a paper strip with n numbers on it. Let's call them ai from left to right.
Now Alexandra wants to split it into some pieces (possibly 1). For each piece of strip, it must satisfy:
- Each piece should contain at least l numbers.
- The difference between the maximal and the minimal number on the piece should be at most s.
Please help Alexandra to find the minimal number of pieces meeting the condition above.
The first line contains three space-separated integers n, s, l (1 ≤ n ≤ 105, 0 ≤ s ≤ 109, 1 ≤ l ≤ 105).
The second line contains n integers ai separated by spaces ( - 109 ≤ ai ≤ 109).
Output the minimal number of strip pieces.
If there are no ways to split the strip, output -1.
7 2 2
1 3 1 2 4 1 2
3
7 2 2
1 100 1 100 1 100 1
-1
For the first sample, we can split the strip into 3 pieces: [1, 3, 1], [2, 4], [1, 2].
For the second sample, we can't let 1 and 100 be on the same piece, so no solution exists.
【题意】给你一个序列,让你分成若干份,对于每一份,要求最大值-最小值<=s,且每一份长度不小于L。求分得的最小份数,若不可分,输出-1.
【分析】考虑DP,dp[i]代表1~i分得的最小份数,则dp[i]=min(dp[j])+1,j当然得满足条件,首先i-j+1>=L,然后max[j,i]-min[j,i]<=s,考虑到区间最大值-最小值具有单调性,所以二分极限的j,然后判断一下j的可行性,可由j-1~i-L之间的最小dp值转移过来。区间最大最小值用RMQ,线段树维护区间dp最小值。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e5+;;
const int M = ;
const int mod = 1e9+;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,len,s;
int dp[N];
int a[N],mi[N*];
int mn[N][],mx[N][],mm[N];
void init() {
for(int j=; j<=mm[n]; ++j) {
for(int i=; i+(<<j)-<=n; ++i) {
mn[i][j]=min(mn[i][j-],mn[i+(<<(j-))][j-]);
mx[i][j]=max(mx[i][j-],mx[i+(<<(j-))][j-]);
}
}
}
int getmx(int l,int r) {
int k = mm[r-l+];
return max(mx[l][k],mx[r-(<<k)+][k]);
}
int getmn(int l,int r) {
int k = mm[r-l+];
return min(mn[l][k],mn[r-(<<k)+][k]);
}
void upd(int l,int r,int rt,int pos){
if(l==r){
mi[rt]=dp[l];
return;
}
int mid=(l+r)>>;
if(pos<=mid)upd(l,mid,rt<<,pos);
else upd(mid+,r,rt<<|,pos);
mi[rt]=min(mi[rt<<],mi[rt<<|]);
}
int qry(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R){
return mi[rt];
}
int ret=inf,mid=(l+r)>>;
if(L<=mid)ret=min(ret,qry(L,R,l,mid,rt<<));
if(R>mid)ret=min(ret,qry(L,R,mid+,r,rt<<|));
return ret;
}
void solve(int pos){
int l=,r=pos,ans=-;
while(l<=r){
int mid=(l+r)>>;
int minn=getmn(mid,pos);
int maxn=getmx(mid,pos);
if(maxn-minn<=s)r=mid-,ans=mid;
else l=mid+;
}
if(ans==-||pos-ans+<len)dp[pos]=inf;
else if(ans==)dp[pos]=;
else dp[pos]=qry(max(ans-,),pos-len,,n,)+;
}
int main(){
mm[]=-;
for(int i=; i<N; ++i)mm[i]=(i&(i-))?mm[i-]:mm[i-]+;
scanf("%d%d%d",&n,&s,&len);
for(int i=;i<=n;i++)scanf("%d",&a[i]),mn[i][]=mx[i][]=a[i];
init();
met(dp,inf);
for(int i=;i<=n;i++){
if(i<len)dp[i]=inf;
else solve(i);
upd(,n,,i);
}
if(dp[n]>=inf)puts("-1");
else printf("%d\n",dp[n]);
return ;
}
Codeforces Round #278 (Div. 1) Strip (线段树 二分 RMQ DP)的更多相关文章
- Codeforces Round #530 (Div. 2) F 线段树 + 树形dp(自下往上)
https://codeforces.com/contest/1099/problem/F 题意 一颗n个节点的树上,每个点都有\(x[i]\)个饼干,然后在i节点上吃一个饼干的时间是\(t[i]\) ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)
题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...
- Nastya Hasn't Written a Legend(Codeforces Round #546 (Div. 2)E+线段树)
题目链接 传送门 题面 题意 给你一个\(a\)数组和一个\(k\)数组,进行\(q\)次操作,操作分为两种: 将\(a_i\)增加\(x\),此时如果\(a_{i+1}<a_i+k_i\),那 ...
- Codeforces Round #422 (Div. 2) E. Liar 后缀数组+RMQ+DP
E. Liar The first semester ended. You know, after the end of the first semester the holidays beg ...
- Codeforces Round #267 (Div. 2) C. George and Job(DP)补题
Codeforces Round #267 (Div. 2) C. George and Job题目链接请点击~ The new ITone 6 has been released recently ...
- Codeforces Round #278 (Div. 1) B. Strip multiset维护DP
B. Strip Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/487/problem/B De ...
- Educational Codeforces Round 6 E dfs序+线段树
题意:给出一颗有根树的构造和一开始每个点的颜色 有两种操作 1 : 给定点的子树群体涂色 2 : 求给定点的子树中有多少种颜色 比较容易想到dfs序+线段树去做 dfs序是很久以前看的bilibili ...
- Codeforces Round #278 (Div. 2) D. Strip 线段树优化dp
D. Strip time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...
随机推荐
- 图论&数学:矩阵树定理
运用矩阵树定理进行生成树计数 给定一个n个点m条边的无向图,问生成树有多少种可能 直接套用矩阵树定理计算即可 矩阵树定理的描述如下: 首先读入无向图的邻接矩阵,u-v G[u][v]++ G[v][u ...
- bzoj 4034: [HAOI2015]树上操作——树链剖分
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...
- Spring注解概览(数漫江湖)
从Java5.0开始,Java开始支持注解.Spring做为Java生态中的领军框架,从2.5版本后也开始支持注解.相比起之前使用xml来配置Spring框架,使用注解提供了更多的控制Spring框架 ...
- python3中处理url异常
import urllib.request import urllib.error url = 'http://c.telunyun.com/Chart/getJsonData?market=1' d ...
- 树莓派开启smb
1.安装smb apt-get install samba samba-common-bin 2.修改/etc/samba/smb.conf配置 设置使用系统用户登入 增加smb访问文件夹 [shar ...
- pinctrl框架【转】
转自:http://www.cnblogs.com/kevinhwang/p/5703192.html pinctrl框架是linux系统为统一各SOC厂家pin管理,目的是为了减少SOC厂家系统移植 ...
- python基础===【字符串】所有相关操作
#字符串的相关操作 #基本操作 #+ 字符串连接操作 str1 = '来是come走是go' str2 = '点头yes摇头no' result = str1 + str2 print(result) ...
- CF625D Finals in arithmetic-构造,贪心,细节
题目链接:http://codeforces.com/contest/625/problem/D 题意: 给你一个数字字符串s,长度1e6,算是一个大数吧,让你找到一个x,使得,x加上 逆转(x)= ...
- java web 资源文件读取
前提:假设web应用test(工程名) webapps下面有一资源文件test.html 规则:在获取资源时一般使用的是相对路径,以符号/开头,而 / 代表什么取决于这个地址给谁使用.服务器使用时,/ ...
- android intent 传数据
1. 基本数据类型 Intent intent = new Intent(); intent.setClass(activity1.this, activity2.class); //描述起点和目标 ...