给你数列a,问你对它作m次求前缀异或和之后的新数列是什么。

考虑a1对最终生成的数列的每一位的贡献,仅仅考虑奇偶性,

当m为2的幂次的时候,恰好是这样的

2^0 1 1 1 1 1 ...

2^1 1 0 1 0 1...

2^2 1 3个0 1 3个0 ...

2^3 1 7个0 1 7个0 ...

于是,从做了i次操作之后的序列,变换到做了i+2^k次操作之后的序列,可以轻松地通过

for i = 1 to n-2^k

  a(i+2^k) := a(i+2^k) xor a(i) 【*】

这样轮求其隔2^k项组成的前缀异或和得到。。。

于是对m进行二进制拆分,其二进制表示下每一个1对应一次【*】操作。就只需要执行m的二进制表示中1的个数次这样的操作即可。

附:

① C(n,m)为奇数当且仅当(n&m)==m。

② n!中因子2的个数等于(n-n的二进制表示中1的个数)。

③ 阶乘中的因子个数是可以递推的。

#include<cstdio>
using namespace std;
int n,m,T,a[200005];
int main(){
scanf("%d",&T);
for(;T;--T){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
scanf("%d",&a[i]);
}
for(int i=0;(1<<i)<=m;++i){
if(m&(1<<i)){
for(int j=1;j+(1<<i)<=n;++j){
a[j+(1<<i)]^=a[j];
}
}
}
for(int i=1;i<n;++i){
printf("%d ",a[i]);
}
printf("%d\n",a[n]);
}
return 0;
}

【找规律】【二进制拆分】hdu6129 Just do it的更多相关文章

  1. 2018.09.01 poj3071Football(概率dp+二进制找规律)

    传送门 概率dp简单题. 设f[i][j]表示前i轮j获胜的概率. 如果j,k能够刚好在第i轮相遇,找规律可以发现j,k满足: (j−1)>>(i−1)" role=" ...

  2. [国家集训队]整数的lqp拆分 数学推导 打表找规律

    题解: 考场上靠打表找规律切的题,不过严谨的数学推导才是本题精妙所在:求:$\sum\prod_{i=1}^{m}F_{a{i}}$ 设 $f(i)$ 为 $N=i$ 时的答案,$F_{i}$ 为斐波 ...

  3. hdu 4731 2013成都赛区网络赛 找规律

    题意:找字串中最长回文串的最小值的串 m=2的时候暴力打表找规律,打表可以用二进制枚举

  4. hdu 3032 Nim or not Nim? (SG函数博弈+打表找规律)

    Nim or not Nim? Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Sub ...

  5. HDU 4588 Count The Carries(找规律,模拟)

    题目 大意: 求二进制的a加到b的进位数. 思路: 列出前几个2进制,找规律模拟. #include <stdio.h> #include <iostream> #includ ...

  6. HDU 4388 Stone Game II 博弈论 找规律

    http://acm.hdu.edu.cn/showproblem.php?pid=4388 http://blog.csdn.net/y1196645376/article/details/5214 ...

  7. HDU 4731 找规律,打表

    http://acm.hust.edu.cn/vjudge/contest/126262#problem/D 分为3种情况,n=1,n=2,n>=3 其中需要注意的是n=2的情况,通过打表找规律 ...

  8. Codeforces Round #242 (Div. 2)C(找规律,异或运算)

    一看就是找规律的题.只要熟悉异或的性质,可以秒杀. 为了防止忘记异或的规则,可以把异或理解为半加运算:其运算法则相当于不带进位的二进制加法. 一些性质如下: 交换律: 结合律: 恒等律: 归零律: 典 ...

  9. HDU 3032 Nim or not Nim?(Multi_SG,打表找规律)

    Nim or not Nim? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

随机推荐

  1. bzoj 3450 DP

    首先我们设len[i]表示前i位,从第i位往前拓展,期望有多少个'o',那么比较容易的转移 len[i]=len[i-1]+1 s[i]='o' len[i]=0 s[i]='x' len[i]=(l ...

  2. 深入理解 JavaScript(四)

    前言 Bob 大叔提出并发扬了 S.O.L.I.D 五大原则,用来更好地进行面向对象编程,五大原则分别是: The Single Responsibility Principle(单一职责 SRP) ...

  3. js_参数的get传输,从一个页面到另外一个页面。

    2017年10月31日,今天是万圣节,欢乐谷搞事情. 刚接触前端那会是分不清,前端和后台的,后台的数据如何传输到前端的. 现在用的还是Jquery的ajax请求后台数据到前端页面的,需要学习的地方还有 ...

  4. 在ubuntu16.04+python3.5情况下安装nltk,以及gensim时pip3安装不成功的解决办法

    在ubuntu16.04+python3.5情况下安装nltk,以及gensim时pip3安装不成功的解决办法,我刚开始因为不太会用linux命令,所以一直依赖于python 的pip命令,可是怎么都 ...

  5. ie8下a标签中的图片出现边框

    1.ie8下a标签中的图片出现边框 <a href="#"><img src="horse.jpg"></a> 效果如图所示 ...

  6. 控制 Cookie 的作用范围

    默认时,网站的所有 Cookies 都一起被存储在客户端,并且所有 Cookies 连同网站的任何请求一起被发送到服务器.换句话说,网站中的每个页面都能够为网站获取所有的 Cookies.但是,你能够 ...

  7. 【EverydaySport】健身笔记——静态牵拉

    静态牵拉一般在运动后进行,可以有效的提高肌肉的柔韧性和关节的灵活性,预防和缓解疼痛. 每个动作达到自己活动范围的最大,有牵拉感即说明有效,静态保持至少30秒,切勿震荡,进行2组. 1 大腿前群牵拉 2 ...

  8. 深入分析_linux_spinlock_实现机制【转】

    转自:http://blog.csdn.net/electrombile/article/details/51289813 在 x86 平台上,spinlock 主要通过处理器的 lock 指令前缀实 ...

  9. python基础===进程,线程,协程的区别(转)

    本文转自:http://blog.csdn.net/hairetz/article/details/16119911 进程拥有自己独立的堆和栈,既不共享堆,亦不共享栈,进程由操作系统调度. 线程拥有自 ...

  10. 如何设置static tableview的section区域高度

    重写代理方法- (CGFloat) tableView:(UITableView *)tableView heightForHeaderInSection:(NSInteger)section { i ...