P1014 Cantor表

题目描述

现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的:

1/1 1/2 1/3 1/4 1/5 …

2/1 2/2 2/3 2/4 …

3/1 3/2 3/3 …

4/1 4/2 …

5/1 …

… 我们以Z字形给上表的每一项编号。第一项是1/1,然后是1/2,2/1,3/1,2/2,…

输入输出格式

输入格式:

整数N(1≤N≤10000000)

输出格式:

表中的第N项

输入输出样例

输入样例#1: 复制

7
输出样例#1: 复制

1/4
 
 

数学

找规律

我们来看一下这个题的一个小规律

1/1

1/2  2/1

3/1  2/2  1/3

1/4  2/3  3/2  4/1

5/1  4/2  3/3  2/4  1/5

1/6  2/5  3/4  4/3  5/2  6/1

、、、、、、、、、、、、、、、、、、、

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define N 10000010
using namespace std;
int n,s,q,s1,s2;
int read()
{
    ,f=; char ch=getchar();
    ;ch=getchar();}
    +ch-',ch=getchar();
    return x*f;
}
int main()
{
    n=read();
    ;i;i++)
     if((s+=i)>=n)
     {
         s-=i;
         q=i; break;
     }
    ==)
    {
        s1=n-s;
        s2=q-(n-s-);
    }
    else
    {
        s2=n-s;
        s1=q-(n-s-);
    }
    printf("%d/%d",s1,s2);
    ;
}

洛谷——P1014 Cantor表的更多相关文章

  1. 洛谷P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  2. 洛谷 P1014 Cantor表

    P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...

  3. [NOIP1999] 提高组 洛谷P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  4. 洛谷 P1014 Cantor表 Label:续命模拟QAQ

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  5. (模拟) codeVs1083 && 洛谷P1014 Cantor表

    题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/ ...

  6. 洛谷 P1014 Cantor表【蛇皮矩阵/找规律/模拟】

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...

  7. java实现 洛谷 P1014 Cantor表

    题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/2 2/3 2/4 - ...

  8. (水题)洛谷 - P1014 - Cantor表

    https://www.luogu.org/problemnew/show/P1014 很显然同一对角线的和是相等的.我们求出前缀和然后二分. 最后注意奇偶的顺序是相反的. #include<b ...

  9. 洛谷P1482 Cantor表(升级版) 题解

    题目传送门 此题zha一看非常简单. 再一看特别简单. 最后瞟一眼,还是很简单. 所以在此就唠一下GCD大法吧: int gcd(int x,int y){ if(x<y) return gcd ...

随机推荐

  1. Codeforces Round #380 (Div. 2)/729E Subordinates 贪心

    There are n workers in a company, each of them has a unique id from 1 to n. Exaclty one of them is a ...

  2. MSSQL Procudure Sample

    代码: USE [Internal_Timesheet] GO /****** Object: StoredProcedure [dbo].[ManageTSReminder] Script Date ...

  3. 【C++对象模型】第二章 构造函数语意学

    1.Default Constructor 当编译器需要的时候,default constructor会被合成出来,只执行编译器所需要的任务(将members适当初始化). 1.1  带有 Defau ...

  4. Tomcat启动报错:org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalin

    Error starting ApplicationContext. To display the auto-configuration report re-run your application ...

  5. dijkstra spfa prim kruskal 总结

    最短路和最小生成树应该是很早学的,大家一般都打得烂熟,总结一下几个问题 一  dijkstra  O((V+E)lgV) //V节点数 E边数 dijkstra不能用来求最长路,因为此时局部最优解已经 ...

  6. 【bzoj3387-跨栏训练】线段树+dp

    我们可以想到一个dp方程:f[i][0]表示当前在i个栅栏的左端点,f[i][1]表示在右端点. 分两种情况: 第一种:假设现在要更新线段gh的左端点g,而它下来的路径被ef挡住了,那么必定是有ef来 ...

  7. 省队集训 Day3 杨北大

    [题目大意] 给出平面上$n$个点$(x_i, y_i)$,请选择一个不在这$n$个点之内的点$(X, Y)$,定义$(X, Y)$的价值为往上下左右四个方向射出去直线,经过$n$个点中的数量的最小值 ...

  8. Spring 与 Quartz 动态配置(数漫江湖)

    因为项目的需求,需要有动态配置计划任务的功能.本文在 Quartz JobBean 中获取配置的 Quartz cronExpression 时间表达式及 Spring Bean 的对象名.方法名并运 ...

  9. bzoj 1927 网络流

    首先我们可以知道这道题中每个点只能经过一次,那么我们引入附加源汇source,sink,那么我们可以将每个点拆成两个点,分别表示对于图中这个节点我们的进和出,那么我们可以连接(source,i,1,0 ...

  10. 9.0docker的数据管理

    dopcker容器的数据卷          为容器添加数据卷 sudo docker run -v  ~/container data:/data  -it ubuntu /bin/bash   查 ...