洛谷——P1014 Cantor表
数学
找规律
我们来看一下这个题的一个小规律
1/1
1/2 2/1
3/1 2/2 1/3
1/4 2/3 3/2 4/1
5/1 4/2 3/3 2/4 1/5
1/6 2/5 3/4 4/3 5/2 6/1
、、、、、、、、、、、、、、、、、、、
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #define N 10000010 using namespace std; int n,s,q,s1,s2; int read() { ,f=; char ch=getchar(); ;ch=getchar();} +ch-',ch=getchar(); return x*f; } int main() { n=read(); ;i;i++) if((s+=i)>=n) { s-=i; q=i; break; } ==) { s1=n-s; s2=q-(n-s-); } else { s2=n-s; s1=q-(n-s-); } printf("%d/%d",s1,s2); ; }
洛谷——P1014 Cantor表的更多相关文章
- 洛谷P1014 Cantor表
P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...
- 洛谷 P1014 Cantor表
P1014 Cantor表 题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 ...
- [NOIP1999] 提高组 洛谷P1014 Cantor表
题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...
- 洛谷 P1014 Cantor表 Label:续命模拟QAQ
题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...
- (模拟) codeVs1083 && 洛谷P1014 Cantor表
题目描述 Description 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/ ...
- 洛谷 P1014 Cantor表【蛇皮矩阵/找规律/模拟】
题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 … 2/1 2/2 2/3 2/4 … ...
- java实现 洛谷 P1014 Cantor表
题目描述 现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的.他是用下面这一张表来证明这一命题的: 1/1 1/2 1/3 1/4 1/5 - 2/1 2/2 2/3 2/4 - ...
- (水题)洛谷 - P1014 - Cantor表
https://www.luogu.org/problemnew/show/P1014 很显然同一对角线的和是相等的.我们求出前缀和然后二分. 最后注意奇偶的顺序是相反的. #include<b ...
- 洛谷P1482 Cantor表(升级版) 题解
题目传送门 此题zha一看非常简单. 再一看特别简单. 最后瞟一眼,还是很简单. 所以在此就唠一下GCD大法吧: int gcd(int x,int y){ if(x<y) return gcd ...
随机推荐
- Codeforces Round #380 (Div. 2)/729E Subordinates 贪心
There are n workers in a company, each of them has a unique id from 1 to n. Exaclty one of them is a ...
- MSSQL Procudure Sample
代码: USE [Internal_Timesheet] GO /****** Object: StoredProcedure [dbo].[ManageTSReminder] Script Date ...
- 【C++对象模型】第二章 构造函数语意学
1.Default Constructor 当编译器需要的时候,default constructor会被合成出来,只执行编译器所需要的任务(将members适当初始化). 1.1 带有 Defau ...
- Tomcat启动报错:org.apache.catalina.LifecycleException: Failed to start component [StandardEngine[Catalin
Error starting ApplicationContext. To display the auto-configuration report re-run your application ...
- dijkstra spfa prim kruskal 总结
最短路和最小生成树应该是很早学的,大家一般都打得烂熟,总结一下几个问题 一 dijkstra O((V+E)lgV) //V节点数 E边数 dijkstra不能用来求最长路,因为此时局部最优解已经 ...
- 【bzoj3387-跨栏训练】线段树+dp
我们可以想到一个dp方程:f[i][0]表示当前在i个栅栏的左端点,f[i][1]表示在右端点. 分两种情况: 第一种:假设现在要更新线段gh的左端点g,而它下来的路径被ef挡住了,那么必定是有ef来 ...
- 省队集训 Day3 杨北大
[题目大意] 给出平面上$n$个点$(x_i, y_i)$,请选择一个不在这$n$个点之内的点$(X, Y)$,定义$(X, Y)$的价值为往上下左右四个方向射出去直线,经过$n$个点中的数量的最小值 ...
- Spring 与 Quartz 动态配置(数漫江湖)
因为项目的需求,需要有动态配置计划任务的功能.本文在 Quartz JobBean 中获取配置的 Quartz cronExpression 时间表达式及 Spring Bean 的对象名.方法名并运 ...
- bzoj 1927 网络流
首先我们可以知道这道题中每个点只能经过一次,那么我们引入附加源汇source,sink,那么我们可以将每个点拆成两个点,分别表示对于图中这个节点我们的进和出,那么我们可以连接(source,i,1,0 ...
- 9.0docker的数据管理
dopcker容器的数据卷 为容器添加数据卷 sudo docker run -v ~/container data:/data -it ubuntu /bin/bash 查 ...