1303: [CQOI2009]中位数图

Time Limit: 1 Sec  Memory Limit: 162 MB

Submit: 3086  Solved: 1898

[Submit][Status][Discuss]

Description

给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b。中位数是指把所有元素从小到大排列后,位于中间的数。

Input

第一行为两个正整数n和b ,第二行为1~n 的排列。

Output

输出一个整数,即中位数为b的连续子序列个数。

Sample Input

7 4

5 7 2 4 3 1 6

Sample Output

4

HINT

第三个样例解释:{4}, {7,2,4}, {5,7,2,4,3}和{5,7,2,4,3,1,6}

N<=100000

很水的一道题,为何我会想到主席树= =

由于是一个排列,所以b只有一个

我们找到b,要做的就是由b的位置开始扩展,使得扩展出来的数中大于b的个数和小于b的个数相等

我们开一个数组sum[x]表示b向左扩展出 大于b个数 - 小于b个数 = x的方案数z

对应我们只要找到一个b向右扩展 小于b的个数 - 大于b的个数 = x的位置,ans就可以加上z

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 100005,maxm = 200005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
int A[maxn],n,pos,b,sum[maxm];
LL ans = 0;
int main()
{
n = read(); b = read();
REP(i,n) if ((A[i] = read()) == b) pos = i;
sum[pos] = 1;
for (int i = 1,tot = 0; i < pos; i++){
if (A[pos - i] < b) tot--;
else tot++;
sum[tot + pos]++;
}
ans = sum[pos];//cout<<ans<<endl;
for (int i = pos + 1,tot = 0; i <= n; i++){
if (A[i] > b) tot--;
else tot++;
ans += sum[tot + pos];
}
cout<<ans<<endl;
return 0;
}

BZOJ1303 [CQOI2009]中位数图 【乱搞】的更多相关文章

  1. bzoj1303[CQOI2008]中位数图 / 乱搞

    题目描述 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. 输入输出格式 输入格式: 第一行为两个正整数n和b,第二行为1 ...

  2. bzoj千题计划175:bzoj1303: [CQOI2009]中位数图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1303 令c[i]表示前i个数中,比d大的数与比d小的数的差,那么如果c[l]=c[r],则[l+1, ...

  3. BZOJ1303 [CQOI2009]中位数图

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  4. BZOJ1303 [CQOI2009]中位数图 其他

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1303 题意概括 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数 ...

  5. 【BZOJ1303】[CQOI2009]中位数图(模拟)

    [BZOJ1303][CQOI2009]中位数图(模拟) 题面 BZOJ 洛谷 题解 把大于\(b\)的数设为\(1\),小于\(b\)的数设为\(-1\).显然询问就是有多少个横跨了\(b\)这个数 ...

  6. BZOJ 1303 CQOI2009 中位数图 水题

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Statu ...

  7. BZOJ 1303: [CQOI2009]中位数图【前缀和】

    1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2737  Solved: 1698[Submit][Statu ...

  8. bzoj 1303: [CQOI2009]中位数图 数学

    1303: [CQOI2009]中位数图 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  9. bzoj 303: [CQOI2009]中位数图【前缀和+瞎搞】

    处理出一个序列c,a[i]>b,c[i]=1;a[i]==b,c[i]=0;a[i]<b,c[i]=-1,然后s为c的前缀和,设w为b在a序列里的下标 注意到子序列一定横跨w,并且一个符合 ...

随机推荐

  1. WEB安全基础之sql注入基础

    1.基础sql语句 注释 单行注释# %23--+ --加空格多行注释/**/ SELECT(VERSION()) SELECT(USER()) SELECT(database()) 查数据库 SEL ...

  2. 第五模块:WEB开发基础 第2章·JavaScript基础

    01-JavaScript的历史发展过程 02-js的引入方式和输出 03-命名规范和变量的声明定义 04-五种基本数据类型 05-运算符 06-字符串处理 07-数据类型转换 08-流程控制语句if ...

  3. Oracle作业练习题

    第一问 //登陆scott用户 //解锁 alter user scott account unlock; //给用户申请密码 alter user scott identified by tiger ...

  4. JVM--内存模型与线程

    一.硬件与效率的一致性 计算机的存储设备与处理器的运算速度存在几个数量级的差距,现在计算机系统不得不在内存和处理器之间增加一层高速缓存(cache)来作为缓冲.将运算需要的数据复制到缓存中,让运算能够 ...

  5. Java 集合学习--HashMap

    一.HashMap 定义 HashMap 是一个基于散列表(哈希表)实现的键值对集合,每个元素都是key-value对,jdk1.8后,底层数据结构涉及到了数组.链表以及红黑树.目的进一步的优化Has ...

  6. 3.azkaban3.0测试

    测试目标 azkaban多executor下flow的分配方式 azkaban可以同时执行的flow\job个数 azkaban单个job最小使用的内存 相关配置 executor最大线程数: exe ...

  7. 使用Promise链式调用解决多个异步回调的问题

    使用Promise链式调用解决多个异步回调的问题 比如我们平常经常遇到的一种情况: 网站中需要先获取用户名,然后再根据用户名去获取用户信息.这里获取用户名getUserName()和获取用户信息get ...

  8. 实现虚拟机VMware上Centos的linux与windows互相复制与粘贴

    转自:http://blog.csdn.net/u012243115/article/details/40454063 1.打开虚拟机的菜单“虚拟机”,下拉框中会有一个“安装 VMwareTools” ...

  9. Java中I/O流之Object流

    Java 中的 object 流:直接将 Object 对象写入或读出 1. serializable 接口:序列化,可以被序列化的,若确实需要将某个类的对象写在硬盘上或网络上,想把他们序列化成一个字 ...

  10. Java中 Auto-boxing/unboxing

    Java 中 Auto-boxing/unboxing 机制,在合适的时机自动打包,解包. 1. 自动将基础类型转换为对象: 2. 自动将对象转换为基础类型: Demo_1: import java. ...