ACM Contest and Blackout

题目链接:https://vjudge.net/problem/UVA-10600

Description:

In order to prepare the “The First National ACM School Contest” (in 20??) the major of the city decided to provide all the schools with a reliable source of power. (The major is really afraid of blackoutsJ). So, in order to do that, power station “Future” and one school (doesn’t matter which one) must be connected; in addition, some schools must be connected as well. You may assume that a school has a reliable source of power if it’s connected directly to “Future”, or to any other school that has a reliable source of power. You are given the cost of connection between some schools. The major has decided to pick out two the cheapest connection plans – the cost of the connection is equal to the sum of the connections between the schools. Your task is to help the major — find the cost of the two cheapest connection plans.

Input:

The Input starts with the number of test cases, T (1 < T < 15) on a line. Then T test cases follow. The first line of every test case contains two numbers, which are separated by a space, N (3 < N < 100) the number of schools in the city, and M the number of possible connections among them. Next M lines contain three numbers Ai , Bi , Ci , where Ci is the cost of the connection (1 < Ci < 300) between schools Ai and Bi . The schools are numbered with integers in the range 1 to N.

Output:

For every test case print only one line of output. This line should contain two numbers separated by a single space – the cost of two the cheapest connection plans. Let S1 be the cheapest cost and S2 the next cheapest cost. It’s important, that S1 = S2 if and only if there are two cheapest plans, otherwise S1 < S2. You can assume that it is always possible to find the costs S1 and S2.

Sample Input:

2

5 8

1 3 75 3 4 51 2 4 19 3 2 95 2 5 42 5 4 31 1 2 9 3 5 66

9 14

1 2 4 1 8 8 2 8 11 3 2 8 8 9 7 8 7 1 7 9 6 9 3 2 3 4 7 3 6 4 7 6 2 4 6 14 4 5 9 5 6 10

Sample Output:

110 121

37 37

题意:

求次小生成树。

题解:

先跑一遍最小生成树,然后O(n^2)预处理出任意两点之间的最小瓶颈路,最后通过枚举算出次小生成树。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#include <cmath>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = ;
int t,n,m;
struct Edge{
int u,v,w;
bool operator < (const Edge &A)const{
return w<A.w;
}
}e[N*N];
int f[N],mp[N][N];
int find(int x){
return f[x]==x?f[x]:f[x]=find(f[x]);
}
int Kruskal(){
int ans=;
for(int i=;i<=n+;i++) f[i]=i;
for(int i=;i<=m;i++){
int u=e[i].u,v=e[i].v;
int fx=find(u),fy=find(v);
if(fx==fy) continue ;
f[fx]=fy;
mp[u][v]=mp[v][u]=;
ans+=e[i].w;
}
return ans ;
}
int d[N][N],dis[N][N];
int check[N];
void dfs(int u,int fa){
for(int i=;i<=n;i++){
if(check[i]) d[i][u]=d[u][i]=max(d[i][fa],dis[u][fa]);
}
check[u]=;
for(int i=;i<=n;i++){
if(mp[i][u] && i!=fa) dfs(i,u);
}
}
int main(){
scanf("%d",&t);
while(t--){
scanf("%d%d",&n,&m);
memset(dis,,sizeof(dis));
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
e[i]=Edge{u,v,w};
dis[u][v]=dis[v][u]=w;
}
sort(e+,e+m+);
memset(d,,sizeof(d));
memset(check,,sizeof(check));
memset(mp,,sizeof(mp));
int sum=Kruskal();
cout<<sum<<" ";
dfs(,-);
int ans=INF;
for(int i=;i<=m;i++){
int u=e[i].u,v=e[i].v,w=e[i].w;
if(mp[u][v]) continue ;
ans=min(ans,sum-d[u][v]+w);
}
cout<<ans<<endl;
} return ;
}

UVA10600:ACM Contest and Blackout(次小生成树)的更多相关文章

  1. UVA10600 ACM Contest and Blackout —— 次小生成树

    题目链接:https://vjudge.net/problem/UVA-10600 In order to prepare the “The First National ACM School Con ...

  2. UVA 10600 ACM Contest and Blackout 次小生成树

    又是求次小生成树,就是求出最小生成树,然后枚举不在最小生成树上的每条边,求出包含着条边的最小生成树,然后取一个最小的 #include <iostream> #include <al ...

  3. UVA-10600 ACM Contest and Blackout (次小生成树)

    题目大意:给一张无向图,找出最小生成树和次小生成树. 题目分析:模板题...方法就是枚举所有的比最小生成树中两端点之间的最长边还要长的边,用它替换,再取一个最小的值便是次小生成树了. 代码如下: # ...

  4. UVA10600 ACM Contest and Blackout

    用prim算法求最小生成树和次小生成树~ #include<cstdio> #include<algorithm> #include<cstring> using ...

  5. 【UVA 10600】 ACM Contest and Blackout(最小生成树和次小生成树)

    [题意] n个点,m条边,求最小生成树的值和次小生成树的值. InputThe Input starts with the number of test cases, T (1 < T < ...

  6. [ An Ac a Day ^_^ ] [kuangbin带你飞]专题八 生成树 UVA 10600 ACM Contest and Blackout 最小生成树+次小生成树

    题意就是求最小生成树和次小生成树 #include<cstdio> #include<iostream> #include<algorithm> #include& ...

  7. 【uva 10600】ACM Contest and Blackout(图论--次小生成树 模版题)

    题意:有T组数据,N个点,M条边,每条边有一定的花费.问最小生成树和次小生成树的权值. 解法:具体请见 关于生成树的拓展 {附[转]最小瓶颈路与次小生成树}(图论--生成树) 1 #include&l ...

  8. uva 10600 ACM Contest And Blackout

    题意: 求最小生成树和次小生成树的总权值. 思路: 第一种做法,适用于规模较小的时候,prim算法进行的时候维护在树中两点之间路径中边的最大值,复杂度O(n^2),枚举边O(m),总复杂度O(n^2) ...

  9. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

随机推荐

  1. eclipse注释快捷键

    1.单行注释 注释: ctrl + / 取消注释: ctrl + / 多行注释 注释: ctrl shift + / 取消注释: ctrl shift + \

  2. 《Git学习指南》学习笔记(二)

    第三章 提交究竟是什么 每次提交都会生成一个40位的散列值.只要知道散列值,我们就可以恢复到该次提交,这个操作也被称之为检出(checkout)操作. 访问权限与时间戳 Git会保存每个文件原有的访问 ...

  3. poj 2155 (二维树状数组 区间修改 求某点值)

    Matrix Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 33682   Accepted: 12194 Descript ...

  4. mac os x下应用endnote异常解决办法

    最近在用Office+Endnote写论文,使用拼音输入法换字时会出现重字和拼音的情况,比如我想打“桥连”,最终出现的是"qiao'lian桥lian桥连”.后来发现这个问题时由endnot ...

  5. 彻底删除win10的 Windows Defender

    使用删除工具和一些教程,都无法删除,最后找到了这个: https://www.newasp.net/soft/351946.html 关闭掉服务后,在C盘全盘搜索,删除,完成了

  6. 【转】Keepalived+Tengine实现高可用集群

    原文出处:http://502245466.blog.51cto.com/7559397/1301772 概述 近年来随着Nginx在国内的发展潮流,越来越多的互联网公司使用Nginx:凭Nginx的 ...

  7. C#创建Window服务图解,安装、配置、以及C#操作Windows服务

    一.首先打开VS2013,创建Windows服务项目 二.创建完成后对"Service1.cs"重命名位"ServiceDemo":然后切换到代码视图,写个服务 ...

  8. YaoLingJump开发者日志(四)

      这么有意思的游戏没有剧情怎么行?开始剧情的搭建.   用到了LGame中的AVGScreen,确实是个好东西呢,只需要准备图片和对话脚本就行了.   经过不断的ps,yy,ps,yy,游戏开头的剧 ...

  9. PHP查询网站

    1.w3school http://www.w3school.com.cn/php/ 2.PHP官网 http://php.net/manual/en/funcref.php 3.国内的类似w3csh ...

  10. Windows Server 2012四大版本介绍

    今天刚好要尝试安装Windows Server 2012,在网上百度了下发现有4个版本,分别是: Datacenter数据中心版. Standard标准版. Essentials版. Foundati ...