Spark SQL中Not in Subquery为何低效以及如何规避
首先看个Not in Subquery的SQL:
// test_partition1 和 test_partition2为Hive外部分区表
select * from test_partition1 t1 where t1.id not in (select id from test_partition2);
对应的完整的逻辑计划和物理计划为:
== Parsed Logical Plan ==
'Project [*]
+- 'Filter NOT 't1.id IN (list#3 [])
: +- 'Project ['id]
: +- 'UnresolvedRelation `test_partition2`
+- 'SubqueryAlias `t1`
+- 'UnresolvedRelation `test_partition1` == Analyzed Logical Plan ==
id: string, name: string, dt: string
Project [id#4, name#5, dt#6]
+- Filter NOT id#4 IN (list#3 [])
: +- Project [id#7]
: +- SubqueryAlias `default`.`test_partition2`
: +- HiveTableRelation `default`.`test_partition2`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#7, name#8], [dt#9]
+- SubqueryAlias `t1`
+- SubqueryAlias `default`.`test_partition1`
+- HiveTableRelation `default`.`test_partition1`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#4, name#5], [dt#6] == Optimized Logical Plan ==
Join LeftAnti, ((id#4 = id#7) || isnull((id#4 = id#7)))
:- HiveTableRelation `default`.`test_partition1`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#4, name#5], [dt#6]
+- Project [id#7]
+- HiveTableRelation `default`.`test_partition2`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#7, name#8], [dt#9] == Physical Plan ==
BroadcastNestedLoopJoin BuildRight, LeftAnti, ((id#4 = id#7) || isnull((id#4 = id#7)))
:- Scan hive default.test_partition1 [id#4, name#5, dt#6], HiveTableRelation `default`.`test_partition1`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#4, name#5], [dt#6]
+- BroadcastExchange IdentityBroadcastMode
+- Scan hive default.test_partition2 [id#7], HiveTableRelation `default`.`test_partition2`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#7, name#8], [dt#9]
通过上述逻辑计划和物理计划可以看出,Spark SQL在对not in subquery处理,从逻辑计划转换为物理计划时,会最终选择BroadcastNestedLoopJoin(对应到Spark源码中BroadcastNestedLoopJoinExec.scala)策略。
提起BroadcastNestedLoopJoin,不得不提Nested Loop Join,它在很多RDBMS中得到应用,比如mysql。它的工作方式是循环从一张表(outer table)中读取数据,然后访问另一张表(inner table,通常有索引),将outer表中的每一条数据与inner表中的数据进行join,类似一个嵌套的循环并且在循环的过程中进行数据的比对校验是否满足一定条件。
对于被连接的数据集较小的情况下,Nested Loop Join是个较好的选择。但是当数据集非常大时,从它的执行原理可知,效率会很低甚至可能影响整个服务的稳定性。
而Spark SQL中的BroadcastNestedLoopJoin就类似于Nested Loop Join,只不过加上了广播表(build table)而已。
BroadcastNestedLoopJoin是一个低效的物理执行计划,内部实现将子查询(select id from test_partition2)进行广播,然后test_partition1每一条记录通过loop遍历广播的数据去匹配是否满足一定条件。
private def leftExistenceJoin(
// 广播的数据
relation: Broadcast[Array[InternalRow]],
exists: Boolean): RDD[InternalRow] = {
assert(buildSide == BuildRight) /* streamed对应物理计划中:
Scan hive default.test_partition1 [id#4, name#5, dt#6], HiveTableRelation `default`.`test_partition1`, org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe, [id#4, name#5], [dt#6]
*/
streamed.execute().mapPartitionsInternal { streamedIter =>
val buildRows = relation.value
val joinedRow = new JoinedRow // 条件是否定义。此处为Some(((id#4 = id#7) || isnull((id#4 = id#7))))
if (condition.isDefined) {
streamedIter.filter(l =>
// exists主要是为了根据joinType来进一步条件判断数据的返回与否,此处joinType为LeftAnti
buildRows.exists(r => boundCondition(joinedRow(l, r))) == exists
) // else
} else if (buildRows.nonEmpty == exists) {
streamedIter
} else {
Iterator.empty
}
}
}
由于BroadcastNestedLoopJoin的低效率执行,可能导致长时间占用executor资源,影响集群性能。同时,因为子查询的结果集要进行广播,如果数据量特别大,对driver端也是一个严峻的考验,极有可能带来OOM的风险。因此,在实际生产中,要尽可能利用其他效率相对高的SQL来避免使用Not in Subquery。
虽然通过改写Not in Subquery的SQL,进行低效率的SQL到高效率的SQL过渡,能够避免上面所说的问题。但是这往往建立在我们发现任务执行慢甚至失败,然后排查任务中的SQL,发现"问题"SQL的前提下。那么如何在任务执行前,就"检查"出这样的SQL,从而进行提前预警呢?
这里笔者给出一个思路,就是解析Spark SQL计划,根据Spark SQL的join策略匹配条件等,来判断任务中是否使用了低效的Not in Subquery进行预警,然后通知业务方进行修改。同时,我们在实际完成数据的ETL处理等分析时,也要事前避免类似的低性能SQL。
关联文章:
Spark SQL如何选择join策略
关注微信公众号:大数据学习与分享,获取更对技术干货
Spark SQL中Not in Subquery为何低效以及如何规避的更多相关文章
- Spark SQL中列转行(UNPIVOT)的两种方法
行列之间的互相转换是ETL中的常见需求,在Spark SQL中,行转列有内建的PIVOT函数可用,没什么特别之处.而列转行要稍微麻烦点.本文整理了2种可行的列转行方法,供参考. 本文链接:https: ...
- spark sql中进行sechema合并
spark sql中支持sechema合并的操作. 直接上官方的代码吧. val sqlContext = new org.apache.spark.sql.SQLContext(sc) // sql ...
- Spark SQL中UDF和UDAF
转载自:https://blog.csdn.net/u012297062/article/details/52227909 UDF: User Defined Function,用户自定义的函数,函数 ...
- Spark SQL中出现 CROSS JOIN 问题解决
Spark SQL中出现 CROSS JOIN 问题解决 1.问题显示如下所示: Use the CROSS JOIN syntax to allow cartesian products b ...
- Spark SQL中的Catalyst 的工作机制
Spark SQL中的Catalyst 的工作机制 答:不管是SQL.Hive SQL还是DataFrame.Dataset触发Action Job的时候,都会经过解析变成unresolved的逻 ...
- Spark sql -- Spark sql中的窗口函数和对应的api
一.窗口函数种类 ranking 排名类 analytic 分析类 aggregate 聚合类 Function Type SQL DataFrame API Description Ranking ...
- 【原创】大叔经验分享(84)spark sql中设置hive.exec.max.dynamic.partitions无效
spark 2.4 spark sql中执行 set hive.exec.max.dynamic.partitions=10000; 后再执行sql依然会报错: org.apache.hadoop.h ...
- Spark SQL中的几种join
1.小表对大表(broadcast join) 将小表的数据分发到每个节点上,供大表使用.executor存储小表的全部数据,一定程度上牺牲了空间,换取shuffle操作大量的耗时,这在SparkSQ ...
- Spark SQL中 RDD 转换到 DataFrame (方法二)
强调它与方法一的区别:当DataFrame的数据结构不能够被提前定义.例如:(1)记录结构已经被编码成字符串 (2) 结构在文本文件中,可能需要为不同场景分别设计属性等以上情况出现适用于以下方法.1. ...
随机推荐
- K8S(07)交付实战-架构说明并准备zk集群
k8s交付实战-架构说明并准备zk集群 目录 k8s交付实战-架构说明并准备zk集群 1 交付的服务架构图: 1.1 架构图解 1.2 交付说明: 2 部署ZK集群 2.1 二进制安装JDK 2.1. ...
- DB-Engines Ranking : Redis, MongoDB, MySQL
DB-Engines Ranking http://db-engines.com/en/ranking The DB-Engines Ranking ranks database management ...
- 十三香 & 香料
十三香 & 香料 十三香原料组成不完全一致, 但有一些香料却是大家都会采用的: 草蔻.砂仁.肉豆蔻.肉桂.丁香. 花椒.大料.小茴香.木香.白芷. 山萘.良姜和姜 王守义十三香 http:// ...
- STAR 法则
STAR 法则 STAR: Situation, Task, Action, Result 一. 什么是 STAR 法则? STAR法则是情境(situation).任务(task).行动(actio ...
- DoH & DNS over HTTPS
DoH & DNS over HTTPS DNS over HTTPS(DoH)服务 http://mozilla.com.cn/thread-422231-1-1.html https:// ...
- TypeScript——02——TS基本数据类型介绍和使用
一,TS的数据类型 ES6的数据类型: 6种基本数据类型 Boolean Number String Symbol undefined null 3种引用类型 Array Function Objec ...
- DBA 的效率加速器——CloudQuery v1.3.0 上线!
好久不见! 自 CloudQuery v1.2.1 发布至今,已有月余,在此期间我们收到了很多朋友对 CloudQuery 的反馈和建议,很多朋友表达了对 v1.3.0 的期待,非常感谢. Cloud ...
- 源码分析:Exchanger之数据交换器
简介 Exchanger是Java5 开始引入的一个类,它允许两个线程之间交换持有的数据.当Exchanger在一个线程中调用exchange方法之后,会阻塞等待另一个线程调用同样的exchange方 ...
- django学习-25.admin管理后台里:把表名称和表字段名称的展示值都由英文显示改为由中文显示
目录结构 1.前言 2.完整的操作步骤 2.1.第一步:修改模型类Article 2.2.第二步:重启服务 2.3.第三步:退出登录并再次成功登陆admin管理后台 2.4.第四步:查看最新的表名称展 ...
- c# winform中窗体切换后释放及防止重复生成
问题1:窗体切换后如何关闭,并释放资? c# winform中,2个窗体,form1和form2,互相切换的时候执行 this.Hide(); Form2 form2 = new Form2(); f ...