Jack Straws(POJ 1127)
- 原题如下:
Jack Straws
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5555 Accepted: 2536 Description
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.Input
Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.When n=0,the input is terminated.
There will be no illegal input and there are no zero-length straws.
Output
You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.Sample Input
7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0Sample Output
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED - 题解:问题的关键是判断线段是否相交,然后就可以建图进行连接性判断。首先会想到计算两直线的交点然后判断交点是否在线段上的方法,这样问题就变成如何判断点是否在线段上以及如何求两直线的交点。在几何问题中,运用向量的内积和外积进行计算是非常方便的。对于二维向量p1=(x1,y1)和p2=(x2,y2),定义内积p1·p2=x1x2+y1y2,外积p1×p2=x1y2-y1x2。要判断点q是否在线段p1-p2上,只要先根据外积(p1-q)×(p2-q)是否等于0来判断点q是否在直线p1-p2上,再利用内积(p1-q)·(p2-q)是否小于等于0来判断点q是否落在p1-p2之间。而要求两直线的交点,通过变量t将直线p1-p2上的点表示为p1+t(p2-p1),交点又在直线q1-q2上,所以有:(q2-q1)×(p1+t(p2-p1)-q1)=0,于是可以利用下式求得t的值:
但是,使用这个方法还要注意边界情况,如果两条线段是平行的,也有可能有公共点,可以通过检查端点是否在另一条线段上来判断。 - 代码:
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const double EPS=1e-; double add(double a, double b)
{
if (fabs(a+b)<EPS*(fabs(a)+fabs(b))) return ;
return a+b;
} struct P
{
double x,y;
P(){};
P(double x, double y):x(x),y(y){}
P operator + (P p)
{
return P(add(x, p.x), add(y, p.y));
}
P operator - (P p)
{
return P(add(x, -p.x), add(y, -p.y));
}
P operator * (double d)
{
return P(x*d, y*d);
}
double dot(P p)
{
return add(x*p.x, y*p.y);
}
double det(P p)
{
return add(x*p.y, -y*p.x);
}
}; bool on_seg(P p1, P p2, P q)
{
return (p1-q).det(p2-q)== && (p1-q).dot(p2-q)<=;
} P intersection(P p1, P p2, P q1, P q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
} const int MAX_N=;
const int MAX_M=;
int n;
P p[MAX_N], q[MAX_N];
int m;
int a[MAX_M], b[MAX_M];
bool g[MAX_N][MAX_N]; int main()
{
while (~scanf("%d", &n) && n)
{
fill(g[], g[]+sizeof(bool)**, false);
for (int i=; i<n; i++)
{
scanf("%lf %lf %lf %lf", &p[i].x, &p[i].y, &q[i].x, &q[i].y);
}
for (int i=;;i++)
{
scanf("%d %d",&a[i], &b[i]);
if (a[i]== && b[i]==)
{
m=i;
break;
}
}
for (int i=; i<n; i++)
{
g[i][i]=true;
for (int j=; j<i; j++)
{
if ((p[i]-q[i]).det(p[j]-q[j])==)
{
g[i][j]=g[j][i]=on_seg(p[i], q[i], p[j])
|| on_seg(p[i], q[i], q[j])
|| on_seg(p[j], q[j], p[i])
|| on_seg(p[j], q[j], q[i]);
}
else
{
P r=intersection(p[i], q[i], p[j], q[j]);
g[i][j]=g[j][i]=on_seg(p[i], q[i], r) && on_seg(p[j], q[j], r);
}
}
}
for (int k=; k<n; k++)
for (int i=; i<n; i++)
for (int j=; j<n; j++)
{
g[i][j] |= g[i][k]&&g[k][j];
}
for (int i=; i<m; i++)
{
puts(g[a[i]-][b[i]-] ? "CONNECTED" : "NOT CONNECTED");
}
}
}
Jack Straws(POJ 1127)的更多相关文章
- Jack Straws POJ - 1127 (简单几何计算 + 并查集)
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...
- Jack Straws POJ - 1127 (几何计算)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5428 Accepted: 2461 Descr ...
- Jack Straws(poj 1127) 两直线是否相交模板
http://poj.org/problem?id=1127 Description In the game of Jack Straws, a number of plastic or wood ...
- poj 1127:Jack Straws(判断两线段相交 + 并查集)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2911 Accepted: 1322 Descr ...
- poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)
Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...
- poj1127 Jack Straws(线段相交+并查集)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Jack Straws Time Limit: 1000MS Memory L ...
- 1840: Jack Straws
1840: Jack Straws 时间限制(普通/Java):1000MS/10000MS 内存限制:65536KByte 总提交: 168 测试通过:129 描述 I ...
- TZOJ 1840 Jack Straws(线段相交+并查集)
描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...
- poj 1127(直线相交+并查集)
Jack Straws Description In the game of Jack Straws, a number of plastic or wooden "straws" ...
随机推荐
- TCP/IP速记
目录 网络协议 OSI七层模型和TCP/IP五层模型 TCP/IP五层模型 TCP的三次握手和四次挥手 三次握手进行连接 四次挥手断开连接 TCP连接的特点 TCP是如何保证安全可靠的 UDP连接的特 ...
- Jira 和 Confluence 企业最佳部署方式
在Atlassian,我们为客户提供不同的方式来部署 Atlassian 产品:可以部署在由 Altassian 管理的云端(Cloud)上,也可以部署在客户自己选择的服务器(Server)或数据中心 ...
- 浅谈python深复制与浅复制区别
话不多说,看代码
- jraft日志复制
jraft的日志复制是指从leader往follower复制logEntry的过程. 日志复制从节点成为leader开始.在nodeImpl的becomeLeader中 private void be ...
- 记录使用Python登录浙江大学统一身份认证
背景 现在每天要进行健康情况上报,但是因为经常睡过头忘记打卡,于是想着写一个程序来自动打卡. 统一身份认证 访问健康情况上报页面(https://healthreport.zju.edu.cn/nco ...
- HotSpot的垃圾回收器
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现.这里讨论的收集器基于JDK 1.7 Update 14之后的 HotSpot 虚拟机,这个虚拟机包含的所有收集器如下图所示 上图 ...
- Vue DevTools 安装应用
1.https: //github.com/vuejs/vue-devtools 从这上面下载Vue DevTools: 2.npm install(cnpm install) && ...
- springboot2整合activiti7具体步骤
写在前面 需要提前了解的内容有 springboot.springSecurity.activiti基本使用 关于activiti Activiti项目是一项新的基于Apache许可的开源BPM平台, ...
- Reinforcement Learning, Fast and Slow
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 1 DeepMind, London, UK2 University College London, London, UK3 Prince ...
- python3 raw 数据转换为jpg
python3 raw 数据转换为jpg 我们大家都知道,sensor 直接出来的裸数据为raw 数据,没有经过编解码,压缩. 我们需要将raw数据转换为其他格式比如jpg,png,bmp 人眼才能看 ...