Jack Straws(POJ 1127)
- 原题如下:
Jack Straws
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5555 Accepted: 2536 Description
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.Input
Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.When n=0,the input is terminated.
There will be no illegal input and there are no zero-length straws.
Output
You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.Sample Input
7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0Sample Output
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED - 题解:问题的关键是判断线段是否相交,然后就可以建图进行连接性判断。首先会想到计算两直线的交点然后判断交点是否在线段上的方法,这样问题就变成如何判断点是否在线段上以及如何求两直线的交点。在几何问题中,运用向量的内积和外积进行计算是非常方便的。对于二维向量p1=(x1,y1)和p2=(x2,y2),定义内积p1·p2=x1x2+y1y2,外积p1×p2=x1y2-y1x2。要判断点q是否在线段p1-p2上,只要先根据外积(p1-q)×(p2-q)是否等于0来判断点q是否在直线p1-p2上,再利用内积(p1-q)·(p2-q)是否小于等于0来判断点q是否落在p1-p2之间。而要求两直线的交点,通过变量t将直线p1-p2上的点表示为p1+t(p2-p1),交点又在直线q1-q2上,所以有:(q2-q1)×(p1+t(p2-p1)-q1)=0,于是可以利用下式求得t的值:
但是,使用这个方法还要注意边界情况,如果两条线段是平行的,也有可能有公共点,可以通过检查端点是否在另一条线段上来判断。 - 代码:
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const double EPS=1e-; double add(double a, double b)
{
if (fabs(a+b)<EPS*(fabs(a)+fabs(b))) return ;
return a+b;
} struct P
{
double x,y;
P(){};
P(double x, double y):x(x),y(y){}
P operator + (P p)
{
return P(add(x, p.x), add(y, p.y));
}
P operator - (P p)
{
return P(add(x, -p.x), add(y, -p.y));
}
P operator * (double d)
{
return P(x*d, y*d);
}
double dot(P p)
{
return add(x*p.x, y*p.y);
}
double det(P p)
{
return add(x*p.y, -y*p.x);
}
}; bool on_seg(P p1, P p2, P q)
{
return (p1-q).det(p2-q)== && (p1-q).dot(p2-q)<=;
} P intersection(P p1, P p2, P q1, P q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
} const int MAX_N=;
const int MAX_M=;
int n;
P p[MAX_N], q[MAX_N];
int m;
int a[MAX_M], b[MAX_M];
bool g[MAX_N][MAX_N]; int main()
{
while (~scanf("%d", &n) && n)
{
fill(g[], g[]+sizeof(bool)**, false);
for (int i=; i<n; i++)
{
scanf("%lf %lf %lf %lf", &p[i].x, &p[i].y, &q[i].x, &q[i].y);
}
for (int i=;;i++)
{
scanf("%d %d",&a[i], &b[i]);
if (a[i]== && b[i]==)
{
m=i;
break;
}
}
for (int i=; i<n; i++)
{
g[i][i]=true;
for (int j=; j<i; j++)
{
if ((p[i]-q[i]).det(p[j]-q[j])==)
{
g[i][j]=g[j][i]=on_seg(p[i], q[i], p[j])
|| on_seg(p[i], q[i], q[j])
|| on_seg(p[j], q[j], p[i])
|| on_seg(p[j], q[j], q[i]);
}
else
{
P r=intersection(p[i], q[i], p[j], q[j]);
g[i][j]=g[j][i]=on_seg(p[i], q[i], r) && on_seg(p[j], q[j], r);
}
}
}
for (int k=; k<n; k++)
for (int i=; i<n; i++)
for (int j=; j<n; j++)
{
g[i][j] |= g[i][k]&&g[k][j];
}
for (int i=; i<m; i++)
{
puts(g[a[i]-][b[i]-] ? "CONNECTED" : "NOT CONNECTED");
}
}
}
Jack Straws(POJ 1127)的更多相关文章
- Jack Straws POJ - 1127 (简单几何计算 + 并查集)
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...
- Jack Straws POJ - 1127 (几何计算)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5428 Accepted: 2461 Descr ...
- Jack Straws(poj 1127) 两直线是否相交模板
http://poj.org/problem?id=1127 Description In the game of Jack Straws, a number of plastic or wood ...
- poj 1127:Jack Straws(判断两线段相交 + 并查集)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2911 Accepted: 1322 Descr ...
- poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)
Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...
- poj1127 Jack Straws(线段相交+并查集)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Jack Straws Time Limit: 1000MS Memory L ...
- 1840: Jack Straws
1840: Jack Straws 时间限制(普通/Java):1000MS/10000MS 内存限制:65536KByte 总提交: 168 测试通过:129 描述 I ...
- TZOJ 1840 Jack Straws(线段相交+并查集)
描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...
- poj 1127(直线相交+并查集)
Jack Straws Description In the game of Jack Straws, a number of plastic or wooden "straws" ...
随机推荐
- [noip2002] 产生数
题目描述 给出一个整数 n (n<1030)和 k 个变换规则 (k < 15) . 规则: 一位数可变换成另一个一位数: 规则的右部不能为零. 例如:n = 234 .有规则( k=2 ...
- SpringMVC9——异常处理
异常处理 SpringMVC: HandlerExceptionResolver接口 该接口的每个实现类都是异常的一种处理方式: 一.ExceptionHandlerExceptionResolv ...
- vue watch 和 computed 区别与使用
目录 computed 和 watch 的说明 与 区别 computed 计算属性说明: watch 监听属性说明: watch 和 computed 的区别是: 使用 参考官方文档 compute ...
- Mybatis PageHelper 分页不起作用
修改中pageHelper引用 之前: <dependency> <groupId>com.github.pagehelper</groupId> <arti ...
- 逆流而上,7月阿里最新出炉的三面面经,年薪50W,我行您也行
从7月份开始,打算找工作,一个偶然的机会,拉勾上一个蚂蚁金服的师兄找到我,说要内推,在此感谢姚师兄,然后就开始了蚂蚁金服的面试之旅.把简历发过去之后,就收到了邮件通知,10个工作日联系我,请耐心等待. ...
- 牛客网PAT练习场-到底买不买
题目地址:https://www.nowcoder.com/pat/6/problem/4065 题意:用数组统计好字符,最后进行相减,最后进行统计 /** * *作者:Ycute *时间:2019- ...
- Java数据结构——2-3树
定义2-3树是平衡的3路查找树,其中2(2-node)是指拥有两个分支的节点,3(3-node)是指拥有三个分支的节点.B-树是一种平衡的多路查找树,2-3树属于b-树,其也同样具有B-树的性质,如m ...
- 微信商户H5支付申请不通过被驳回解法,拒绝提示:网站有不实内容或不安全信息
H5支付是指商户在微信客户端外的移动端网页展示商品或服务,用户在前述页面确认使用微信支付时,商户发起本服务呼起微信客户端进行支付.主要用于触屏版的手机浏览器请求微信支付的场景.可以方便从外部浏览器唤起 ...
- SpringCloud系列之Nacos应用篇
前言 原先项目是以SpringConfig作为项目配置中心组件,Eureka作为服务注册发现组件,基本上就是SpringCloud全家桶,Eureka已经停更,所以前期调研可替换方案,主流替换方案有C ...
- 【Go语言探险】线上奇怪日志问题的排查
最近在日志中发现一些奇怪的日志,大致长这样: Error 2020-08-28 06:59:38.813+00:00 ... _msg=get immersion context, fetch tra ...