Jack Straws(POJ 1127)
- 原题如下:
Jack Straws
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5555 Accepted: 2536 Description
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.Input
Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.When n=0,the input is terminated.
There will be no illegal input and there are no zero-length straws.
Output
You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.Sample Input
7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0Sample Output
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED - 题解:问题的关键是判断线段是否相交,然后就可以建图进行连接性判断。首先会想到计算两直线的交点然后判断交点是否在线段上的方法,这样问题就变成如何判断点是否在线段上以及如何求两直线的交点。在几何问题中,运用向量的内积和外积进行计算是非常方便的。对于二维向量p1=(x1,y1)和p2=(x2,y2),定义内积p1·p2=x1x2+y1y2,外积p1×p2=x1y2-y1x2。要判断点q是否在线段p1-p2上,只要先根据外积(p1-q)×(p2-q)是否等于0来判断点q是否在直线p1-p2上,再利用内积(p1-q)·(p2-q)是否小于等于0来判断点q是否落在p1-p2之间。而要求两直线的交点,通过变量t将直线p1-p2上的点表示为p1+t(p2-p1),交点又在直线q1-q2上,所以有:(q2-q1)×(p1+t(p2-p1)-q1)=0,于是可以利用下式求得t的值:

但是,使用这个方法还要注意边界情况,如果两条线段是平行的,也有可能有公共点,可以通过检查端点是否在另一条线段上来判断。 - 代码:
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const double EPS=1e-; double add(double a, double b)
{
if (fabs(a+b)<EPS*(fabs(a)+fabs(b))) return ;
return a+b;
} struct P
{
double x,y;
P(){};
P(double x, double y):x(x),y(y){}
P operator + (P p)
{
return P(add(x, p.x), add(y, p.y));
}
P operator - (P p)
{
return P(add(x, -p.x), add(y, -p.y));
}
P operator * (double d)
{
return P(x*d, y*d);
}
double dot(P p)
{
return add(x*p.x, y*p.y);
}
double det(P p)
{
return add(x*p.y, -y*p.x);
}
}; bool on_seg(P p1, P p2, P q)
{
return (p1-q).det(p2-q)== && (p1-q).dot(p2-q)<=;
} P intersection(P p1, P p2, P q1, P q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
} const int MAX_N=;
const int MAX_M=;
int n;
P p[MAX_N], q[MAX_N];
int m;
int a[MAX_M], b[MAX_M];
bool g[MAX_N][MAX_N]; int main()
{
while (~scanf("%d", &n) && n)
{
fill(g[], g[]+sizeof(bool)**, false);
for (int i=; i<n; i++)
{
scanf("%lf %lf %lf %lf", &p[i].x, &p[i].y, &q[i].x, &q[i].y);
}
for (int i=;;i++)
{
scanf("%d %d",&a[i], &b[i]);
if (a[i]== && b[i]==)
{
m=i;
break;
}
}
for (int i=; i<n; i++)
{
g[i][i]=true;
for (int j=; j<i; j++)
{
if ((p[i]-q[i]).det(p[j]-q[j])==)
{
g[i][j]=g[j][i]=on_seg(p[i], q[i], p[j])
|| on_seg(p[i], q[i], q[j])
|| on_seg(p[j], q[j], p[i])
|| on_seg(p[j], q[j], q[i]);
}
else
{
P r=intersection(p[i], q[i], p[j], q[j]);
g[i][j]=g[j][i]=on_seg(p[i], q[i], r) && on_seg(p[j], q[j], r);
}
}
}
for (int k=; k<n; k++)
for (int i=; i<n; i++)
for (int j=; j<n; j++)
{
g[i][j] |= g[i][k]&&g[k][j];
}
for (int i=; i<m; i++)
{
puts(g[a[i]-][b[i]-] ? "CONNECTED" : "NOT CONNECTED");
}
}
}
Jack Straws(POJ 1127)的更多相关文章
- Jack Straws POJ - 1127 (简单几何计算 + 并查集)
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...
- Jack Straws POJ - 1127 (几何计算)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5428 Accepted: 2461 Descr ...
- Jack Straws(poj 1127) 两直线是否相交模板
http://poj.org/problem?id=1127 Description In the game of Jack Straws, a number of plastic or wood ...
- poj 1127:Jack Straws(判断两线段相交 + 并查集)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2911 Accepted: 1322 Descr ...
- poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)
Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...
- poj1127 Jack Straws(线段相交+并查集)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Jack Straws Time Limit: 1000MS Memory L ...
- 1840: Jack Straws
1840: Jack Straws 时间限制(普通/Java):1000MS/10000MS 内存限制:65536KByte 总提交: 168 测试通过:129 描述 I ...
- TZOJ 1840 Jack Straws(线段相交+并查集)
描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...
- poj 1127(直线相交+并查集)
Jack Straws Description In the game of Jack Straws, a number of plastic or wooden "straws" ...
随机推荐
- vue调起微信JSDK 扫一扫,相册等需要注意的事项
在VUE里面需要注意的第一个问题就是路由得设置成 2:第二个就是 跳转路由的时候 不要用this.$router.push 或者this.$router.replace 前者在ios 和安卓端都调不 ...
- 手把手教你写VueRouter
Vue-Router提供了俩个组件 `router-link` `router-view`, 提供了俩个原型上的属性`$route` `$router` ,我现在跟着源码来把它实现一下 开始 先看平时 ...
- dotnet cli
前言 dotnet cli (Command-Line Interface) .net 源代码和二进制文件管理工具.需要安装 .NET Core SDK. 终端执行 dotnet --info 可以打 ...
- 笔记:CSS基础
一.CSS(层叠式样式表),决定页面怎么显示元素 1.引入方式: 行内样式,在当前标签元素中直接使用 style 的属性. 内嵌方式,在<head>中写样式: 外链式,<link&g ...
- RocketMQ在windows环境下的安装(转)
原博地址:https://www.jianshu.com/p/4a275e779afa 一.预备环境 1.系统 Windows 2. 环境 JDK1.8.Maven.Git 二. RocketMQ部署 ...
- 第4章 SparkSQL数据源
第4章 SparkSQL数据源 4.1 通用加载/保存方法 4.1.1 手动指定选项 Spark SQL的DataFrame接口支持多种数据源的操作.一个DataFrame可以进行RDDs方式的操作, ...
- 要有一颗理财的心 - 读<富爸爸.穷爸爸>
记得工作没多久后的一次加薪的例行谈话.部门经理和我说,不能靠工资过日子,要多想想怎么投资,我的主要财富就是靠投资赚来的.当时第一反应,老板,你不给我加薪找这借口也太牵强了吧.我的收入只有工资,我的工资 ...
- maven命令下载jar包
mvn install:install-file -Dfile=jar包保存的本地路径 -DgroupId=jar保存的父级路径 -DartifactId=jar包文件夹名称 -Dversion=版本 ...
- Linux 将文件打包、压缩并分割成指定大小
打包文件: tar -cvf .tar 分割文件: split -b 3G -d -a .tar .tar. //使用split命令,-b 3G 表示设置每个分割包的大小,单位还是可以k // -d ...
- 第6篇scrum冲刺(5.26)
一.站立会议 1.照片 2.工作安排 成员 昨天已完成的工作 今天的工作安排 困难 陈芝敏 研究云开发,更新了登录模块,把用户的信息传入数据库了 学习云开发,云函数调用以及数据的前后端传递 遇 ...