Jack Straws(POJ 1127)
- 原题如下:
Jack Straws
Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5555 Accepted: 2536 Description
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table and players try to remove them one-by-one without disturbing the other straws. Here, we are only concerned with if various pairs of straws are connected by a path of touching straws. You will be given a list of the endpoints for some straws (as if they were dumped on a large piece of graph paper) and then will be asked if various pairs of straws are connected. Note that touching is connecting, but also two straws can be connected indirectly via other connected straws.Input
Input consist multiple case,each case consists of multiple lines. The first line will be an integer n (1 < n < 13) giving the number of straws on the table. Each of the next n lines contain 4 positive integers,x1,y1,x2 and y2, giving the coordinates, (x1,y1),(x2,y2) of the endpoints of a single straw. All coordinates will be less than 100. (Note that the straws will be of varying lengths.) The first straw entered will be known as straw #1, the second as straw #2, and so on. The remaining lines of the current case(except for the final line) will each contain two positive integers, a and b, both between 1 and n, inclusive. You are to determine if straw a can be connected to straw b. When a = 0 = b, the current case is terminated.When n=0,the input is terminated.
There will be no illegal input and there are no zero-length straws.
Output
You should generate a line of output for each line containing a pair a and b, except the final line where a = 0 = b. The line should say simply "CONNECTED", if straw a is connected to straw b, or "NOT CONNECTED", if straw a is not connected to straw b. For our purposes, a straw is considered connected to itself.Sample Input
7
1 6 3 3
4 6 4 9
4 5 6 7
1 4 3 5
3 5 5 5
5 2 6 3
5 4 7 2
1 4
1 6
3 3
6 7
2 3
1 3
0 0 2
0 2 0 0
0 0 0 1
1 1
2 2
1 2
0 0 0Sample Output
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
NOT CONNECTED
CONNECTED
CONNECTED
CONNECTED
CONNECTED - 题解:问题的关键是判断线段是否相交,然后就可以建图进行连接性判断。首先会想到计算两直线的交点然后判断交点是否在线段上的方法,这样问题就变成如何判断点是否在线段上以及如何求两直线的交点。在几何问题中,运用向量的内积和外积进行计算是非常方便的。对于二维向量p1=(x1,y1)和p2=(x2,y2),定义内积p1·p2=x1x2+y1y2,外积p1×p2=x1y2-y1x2。要判断点q是否在线段p1-p2上,只要先根据外积(p1-q)×(p2-q)是否等于0来判断点q是否在直线p1-p2上,再利用内积(p1-q)·(p2-q)是否小于等于0来判断点q是否落在p1-p2之间。而要求两直线的交点,通过变量t将直线p1-p2上的点表示为p1+t(p2-p1),交点又在直线q1-q2上,所以有:(q2-q1)×(p1+t(p2-p1)-q1)=0,于是可以利用下式求得t的值:

但是,使用这个方法还要注意边界情况,如果两条线段是平行的,也有可能有公共点,可以通过检查端点是否在另一条线段上来判断。 - 代码:
#include <cstdio>
#include <cmath>
#include <algorithm> using namespace std; const double EPS=1e-; double add(double a, double b)
{
if (fabs(a+b)<EPS*(fabs(a)+fabs(b))) return ;
return a+b;
} struct P
{
double x,y;
P(){};
P(double x, double y):x(x),y(y){}
P operator + (P p)
{
return P(add(x, p.x), add(y, p.y));
}
P operator - (P p)
{
return P(add(x, -p.x), add(y, -p.y));
}
P operator * (double d)
{
return P(x*d, y*d);
}
double dot(P p)
{
return add(x*p.x, y*p.y);
}
double det(P p)
{
return add(x*p.y, -y*p.x);
}
}; bool on_seg(P p1, P p2, P q)
{
return (p1-q).det(p2-q)== && (p1-q).dot(p2-q)<=;
} P intersection(P p1, P p2, P q1, P q2)
{
return p1+(p2-p1)*((q2-q1).det(q1-p1)/(q2-q1).det(p2-p1));
} const int MAX_N=;
const int MAX_M=;
int n;
P p[MAX_N], q[MAX_N];
int m;
int a[MAX_M], b[MAX_M];
bool g[MAX_N][MAX_N]; int main()
{
while (~scanf("%d", &n) && n)
{
fill(g[], g[]+sizeof(bool)**, false);
for (int i=; i<n; i++)
{
scanf("%lf %lf %lf %lf", &p[i].x, &p[i].y, &q[i].x, &q[i].y);
}
for (int i=;;i++)
{
scanf("%d %d",&a[i], &b[i]);
if (a[i]== && b[i]==)
{
m=i;
break;
}
}
for (int i=; i<n; i++)
{
g[i][i]=true;
for (int j=; j<i; j++)
{
if ((p[i]-q[i]).det(p[j]-q[j])==)
{
g[i][j]=g[j][i]=on_seg(p[i], q[i], p[j])
|| on_seg(p[i], q[i], q[j])
|| on_seg(p[j], q[j], p[i])
|| on_seg(p[j], q[j], q[i]);
}
else
{
P r=intersection(p[i], q[i], p[j], q[j]);
g[i][j]=g[j][i]=on_seg(p[i], q[i], r) && on_seg(p[j], q[j], r);
}
}
}
for (int k=; k<n; k++)
for (int i=; i<n; i++)
for (int j=; j<n; j++)
{
g[i][j] |= g[i][k]&&g[k][j];
}
for (int i=; i<m; i++)
{
puts(g[a[i]-][b[i]-] ? "CONNECTED" : "NOT CONNECTED");
}
}
}
Jack Straws(POJ 1127)的更多相关文章
- Jack Straws POJ - 1127 (简单几何计算 + 并查集)
In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the table ...
- Jack Straws POJ - 1127 (几何计算)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5428 Accepted: 2461 Descr ...
- Jack Straws(poj 1127) 两直线是否相交模板
http://poj.org/problem?id=1127 Description In the game of Jack Straws, a number of plastic or wood ...
- poj 1127:Jack Straws(判断两线段相交 + 并查集)
Jack Straws Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2911 Accepted: 1322 Descr ...
- poj 1127 -- Jack Straws(计算几何判断两线段相交 + 并查集)
Jack Straws In the game of Jack Straws, a number of plastic or wooden "straws" are dumped ...
- poj1127 Jack Straws(线段相交+并查集)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Jack Straws Time Limit: 1000MS Memory L ...
- 1840: Jack Straws
1840: Jack Straws 时间限制(普通/Java):1000MS/10000MS 内存限制:65536KByte 总提交: 168 测试通过:129 描述 I ...
- TZOJ 1840 Jack Straws(线段相交+并查集)
描述 In the game of Jack Straws, a number of plastic or wooden "straws" are dumped on the ta ...
- poj 1127(直线相交+并查集)
Jack Straws Description In the game of Jack Straws, a number of plastic or wooden "straws" ...
随机推荐
- 解决 Could not resolve type alias 'com.deppon.gis.module.job.server.util.SdoGeometryTypeHandler'. 的办法
单元测试提示下面错误: 核心错误: Failed to parse mapping resource: 'file [D:\490993\安装程序\DPAP2.1\dpap_v2.0.1\dpap_v ...
- 数据 恢复----判断Raid盘序及校验方向
重组Raid(如何判断校验方向及盘序) 1. 常规左异结构[backward parity(反向奇偶校验--(静态))] 校验块:校验块从最后一块物理盘开始写起,然后依次往前面的盘中写入,当写到第一块 ...
- Centos7查看端口占用
(1)netstat -lnp|grep 50090 如果提示没有netstat命令,可需要安装:yum -y install net-tools (2) lsof -i:50090 参考链接:lin ...
- 冒泡排序(Bubble Sorting)
基本介绍 时间复杂度O(n^2) 冒泡排序(Bubble Sorting)的基本思想是:通过对待 排序序列从前向后(从下标较小的元素开始),依次比较 相邻元素的值,若发现逆序则交换,使值较大 的元素逐 ...
- magento2 定时任务
* * * * * /usr/bin/php /www/wwwroot/m2.demo.evebit.cn/bin/magento cron:run | grep -v "Ran jobs ...
- 月历输出php代码
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 手把手教Linux驱动3-之字符设备架构详解,有这篇就够了
一.Linux设备分类 Linux系统为了管理方便,将设备分成三种基本类型: 字符设备 块设备 网络设备 字符设备: 字符(char)设备是个能够像字节流(类似文件)一样被访问的设备,由字符设备驱动程 ...
- [PyTorch 学习笔记] 2.1 DataLoader 与 DataSet
thumbnail: https://image.zhangxiann.com/jeison-higuita-W19AQY42rUk-unsplash.jpg toc: true date: 2020 ...
- HTTP/3 来了,你了解它么?
作为我们网上冲浪最为常见,也经常被人忽视的 HTTP 已经更新换代到了 HTTP/3.本文简单明了的带你认识 HTTP/3 的作用. 最近二狗子看到自己存储女神婷婷照片所用的云服务商--又拍云推出了 ...
- hyperledger-fabric环境快速搭建踩坑集锦(实用)
安装docker 及 docker-compose 安装docker没什么好说的,一部分教程都给出了指令,在这里就不谈了. docker-compose不同的教程给出了不同的方法,在这里介绍一种极为快 ...