利用神经网络算法的C#手写数字识别(二)
 
本篇主要内容:
让项目编译通过,并能打开图片进行识别。
 
1. 从上一篇《利用神经网络算法的C#手写数字识别》中的源码地址下载源码与资源,
注意,两者都要下载,资源里有训练数据集。
2. 下载后源码项目用VS打开,第一遍是编译不过的,会提示参数不正确。
将资源中的DATA文件夹考入到编译目录下,如Bin\Debug下, 即可编译通过.
目录如下:
 
3. 上篇文中所述的打开一个图片并识别的功能在代码中是没有实现的。
本篇我们将在此项目中实现。
先看看实现后的效果:
打开一个测试图后:
 
 
 
 
可以看到当前的Char的rectangle位置还不对,
我们先把这部分的实现做出来。
 
4. NNTestPatterns类中加入新的方法与成员变量
 #region 潘正平新增加的
public List<Rectangle> _rowRctList;
public List<Rectangle> _currentWordRctsList;
public List<Rectangle> _currentCharRctsList;
public List<Bitmap> m_bitmaps;
int _irowIndex = 0;
int _iwordIndex = 0;
int _icharIndex;
Bitmap _originalBitmap;
Bitmap _currentRow;
Bitmap _currentWord; /// <summary>
/// 潘正平新加
/// </summary>
/// <param name="bitmap"></param>
public void PatternRecognitionThread(Bitmap bitmap)
{
m_bitmaps = new List<Bitmap>();
_originalBitmap = bitmap;
if (_rowRctList == null)
{
_rowRctList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_originalBitmap, 255, 30, 1, true, 5, 5);
_irowIndex = 0; }
foreach (Rectangle rowRect in _rowRctList)
{
_currentRow = AForge.Imaging.ImageResize.ImageCrop
(_originalBitmap, rowRect);
if (_iwordIndex == 0)
{
_currentWordRctsList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_currentRow, 255, 20, 10, false, 5, 5);
} foreach (Rectangle wordRect in _currentWordRctsList)
{
_currentWord = AForge.Imaging.ImageResize.ImageCrop
(_currentRow, wordRect);
_iwordIndex++;
if (_icharIndex == 0)
{
_currentCharRctsList =
AForge.Imaging.Image.PatternRectangeBoundaryList
(_currentWord, 255, 1, 1, false, 5, 5);
} foreach (Rectangle charRect in _currentCharRctsList)
{
Bitmap _currentChar = AForge.Imaging.ImageResize.ImageCrop
(_currentWord, charRect);
_icharIndex++;
Bitmap bmptemp = AForge.Imaging.ImageResize.FixedSize
(_currentChar, 21, 21);
bmptemp = AForge.Imaging.Image.CreateColorPad
(bmptemp, Color.White, 4, 4);
bmptemp = AForge.Imaging.Image.CreateIndexedGrayScaleBitmap
(bmptemp);
byte[] graybytes = AForge.Imaging.Image.GrayscaletoBytes(bmptemp);
PatternRecognizingThread(graybytes);
m_bitmaps.Add(bmptemp);
}
string s = " \n";
_form.Invoke(_form._DelegateAddObject, new Object[] { 1, s });
if (_icharIndex == _currentCharRctsList.Count)
{
_icharIndex = 0;
}
}
if (_iwordIndex == _currentWordRctsList.Count)
{
_iwordIndex = 0;
}
}
}
#endregion
 
5. MainForm中增加 pictureBoxMain的Paint事件与对应方法.
增加打开图像文件菜单。
 
 #region 潘正平新增加的
private void OpenTestImagesToolStripMenuItem_Click(object sender, EventArgs e)
{
if (!_bTestingDataReady || !_MinstTestingDatabase.m_bDatabaseReady)
{
MessageBox.Show("请先加载测试数据库!");
return;
}
OpenFileDialog fDlg = new OpenFileDialog();
fDlg.Filter = "*.bmp|*.bmp|*.jpg|*.jpg";
if (fDlg.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{
Bitmap bmp = new Bitmap(fDlg.FileName);
//this.pictureBoxMain.Image = bmp;
Bitmap bmp2 = new Bitmap(bmp);
this.ImagePatternRecognization(bmp2);
}
} private void ImagePatternRecognization(Bitmap bmp)
{
List<Mutex> mutexs = new List<Mutex>(2);
for (int i = 0; i < 2; i++)
{
var mutex = new Mutex();
mutexs.Add(mutex);
} NNTessing = new NNTestPatterns(_NN, _Mnistdatabase, _Preference, _bDatabaseReady, null, null, this, mutexs);
var thread = new Thread(() => NNTessing.PatternRecognitionThread(bmp));
thread.Start();
while(thread.IsAlive)
{
Application.DoEvents();
Thread.Sleep(10);
}
this.pictureBoxMain.Image = bmp;
this.pictureBoxMain.Refresh();
} NNTestPatterns NNTessing;
Pen pen = new Pen(Color.Red); private void pictureBoxMain_Paint(object sender, PaintEventArgs e)
{
if (NNTessing != null)
{
if (NNTessing._currentCharRctsList != null)
{
e.Graphics.DrawRectangles(pen, NNTessing._currentCharRctsList.ToArray());
}
if (NNTessing._currentWordRctsList != null)
{
e.Graphics.DrawRectangles(pen, NNTessing._currentWordRctsList.ToArray());
}
if (NNTessing._rowRctList != null)
{
e.Graphics.DrawRectangles(pen, NNTessing._rowRctList.ToArray());
}
}
}
#endregion
 
6. 加入以上代码后编译就是我们看到的效果。
 
7. 一下步我们来看看最终识别的字符串以及的Char的Rectangle不在正确的位置。
代码修改后如下:
 
修改过程:理解几个rectangle的关系,有RowRct, wordRct, charRct 这几个均为相对位置。
显示识别结果放在主界面的右下方,
 
8. 针对以上描述修改的内容 NNTestPatterns.cs中:
#region 潘正平新增加的
public List<Rectangle> _rowRctList;
public List<Rectangle> _currentWordRctsList;
public List<Rectangle> _currentWordCharRctsList;
public List<Bitmap> m_bitmaps;
int _irowIndex = 0;
int _iwordIndex = 0;
int _icharIndex;
Bitmap _originalBitmap;
Bitmap _currentRow;
Bitmap _currentWord; /// <summary>
/// 潘正平新加
/// </summary>
/// <param name="bitmap"></param>
public void PatternRecognitionThread(Bitmap bitmap)
{
_currentWordCharRctsList = new List<Rectangle>();
m_bitmaps = new List<Bitmap>();
_originalBitmap = bitmap;
if (_rowRctList == null)
{
_rowRctList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_originalBitmap, 255, 30, 1, true, 5, 5);
_irowIndex = 0; }
foreach (Rectangle rowRect in _rowRctList)
{
_currentRow = AForge.Imaging.ImageResize.ImageCrop
(_originalBitmap, rowRect);
if (_iwordIndex == 0)
{
_currentWordRctsList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_currentRow, 255, 20, 10, false, 5, 5);
} foreach (Rectangle wordRect in _currentWordRctsList)
{
_currentWord = AForge.Imaging.ImageResize.ImageCrop
(_currentRow, wordRect);
_iwordIndex++;
List<Rectangle> _currentCharRctsList = new List<Rectangle>();
if (_icharIndex == 0)
{
_currentCharRctsList = AForge.Imaging.Image.PatternRectangeBoundaryList(_currentWord, 255, 1, 1, false, 5, 5);
}
string strWord = string.Empty;
foreach (Rectangle charRect in _currentCharRctsList)
{
Bitmap _currentChar = AForge.Imaging.ImageResize.ImageCrop(_currentWord, charRect);
_icharIndex++;
Bitmap bmptemp = AForge.Imaging.ImageResize.FixedSize(_currentChar, 21, 21);
bmptemp = AForge.Imaging.Image.CreateColorPad(bmptemp, Color.White, 4, 4);
bmptemp = AForge.Imaging.Image.CreateIndexedGrayScaleBitmap(bmptemp);
byte[] graybytes = AForge.Imaging.Image.GrayscaletoBytes(bmptemp);
strWord += PatternRecognizingThread(graybytes);
m_bitmaps.Add(bmptemp);
//
Rectangle rctCharAbsolute = new Rectangle(wordRect.Left + charRect.Left + rowRect.Left, wordRect.Top + charRect.Top + rowRect.Top, charRect.Width, charRect.Height);
this._currentWordCharRctsList.Add(rctCharAbsolute);
}
string s = " \n";
_form.Invoke(_form._DelegateAddObject, new Object[] { 1, s });
_form.Invoke(_form._DelegateAddObject, new Object[] { 8, strWord });
if (_icharIndex == _currentCharRctsList.Count)
{
_icharIndex = 0;
}
}
if (_iwordIndex == _currentWordRctsList.Count)
{
_iwordIndex = 0;
}
}
}
#endregion
 
 

利用神经网络算法的C#手写数字识别(二)的更多相关文章

  1. 【机器学习】k-近邻算法应用之手写数字识别

    上篇文章简要介绍了k-近邻算法的算法原理以及一个简单的例子,今天再向大家介绍一个简单的应用,因为使用的原理大体差不多,就没有没有过多的解释. 为了具有说明性,把手写数字的图像转换为txt文件,如下图所 ...

  2. 卷积神经网络应用于tensorflow手写数字识别(第三版)

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

  3. 基于sk_learn的k近邻算法实现-mnist手写数字识别且要求97%以上精确率

    1. 导入需要的库 from sklearn.datasets import fetch_openml import numpy as np from sklearn.neighbors import ...

  4. MLP 之手写数字识别

    0. 前言 前面我们利用 LR 模型实现了手写数字识别,但是效果并不好(不到 93% 的正确率). LR 模型从本质上来说还只是一个线性的分类器,只不过在线性变化之后加入了非线性单调递增 sigmoi ...

  5. 利用神经网络算法的C#手写数字识别

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...

  6. 利用神经网络算法的C#手写数字识别(一)

    利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...

  7. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  8. 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu

    对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...

  9. 利用c++编写bp神经网络实现手写数字识别详解

    利用c++编写bp神经网络实现手写数字识别 写在前面 从大一入学开始,本菜菜就一直想学习一下神经网络算法,但由于时间和资源所限,一直未展开比较透彻的学习.大二下人工智能课的修习,给了我一个学习的契机. ...

随机推荐

  1. (2)ElasticSearch在linux环境中集成IK分词器

    1.简介 ElasticSearch默认自带的分词器,是标准分词器,对英文分词比较友好,但是对中文,只能把汉字一个个拆分.而elasticsearch-analysis-ik分词器能针对中文词项颗粒度 ...

  2. Java之定时任务全家桶

    定时任务应用非常广泛,Java提供的现有解决方案有很多.本次主要讲schedule.quartz.xxl-job.shedlock等相关的代码实践. 一.SpringBoot使用Schedule 核心 ...

  3. PHP反序列化漏洞-CVE-2016-7124(绕过__wakeup)复现

    前言 最近电脑也不知怎么了时不时断网而且我竟然找不出原因!!!很诡异....  其他设备电脑都OK唯独我的电脑 时好时坏 我仿佛摸清了我电脑断网的时间段所以作息时间都改变了  今天12点多断网刷了会手 ...

  4. msfconsle核心命令学习

    back 取消当前模块 banner check 检查当前exploit是否对目标有效,并不进行真正的攻击 color 禁用或启用输出是否包含颜色 connect 可以通过connect命令来链接Ne ...

  5. python 工业日志模块 未来的python日志最佳实践

    目录 介绍 好的功能 安装方法 参数介绍 呆log 参数与 使用方法 版本说明 后期版本规划 todo 感谢 介绍 呆log:工业中,python日志模块,安装即用.理论上支持 python2, py ...

  6. mongodb 副本集之入门篇

    作者: 凹凸曼-军军 前言:mongodb 因为高性能.高可用性.支持分片等特性,作为非关系型数据库被大家广泛使用.其高可用性主要是体现在 mongodb 的副本集上面(可以简单理解为一主多从的集群) ...

  7. 第四章:动态规划I

    4.1背包问题 动态规划的核心:如何构造一个高效的备忘录,提高整个问题求解的效率. 4.2最大子数组问题II

  8. LIKE 运算符

    运算符用于执行程序代码运算,会针对一个以上操作数项目来进行运算.例如:2+3,其操作数是2和3,而运算符则是"+".在vb2005中运算符大致可以分为5种类型:算术运算符.连接运算 ...

  9. fastjson JSONObject简单使用

    工作中用的蛮多的最近整理下,概括地说 通过这个工具可以让一个json在json串,JSONObject,java对象之间进行转化 首先我们先写2个bean来构成一个比较复杂的json串: public ...

  10. TkMybatis 是什么?

    一.TkMybatis Tkmybatis 是基于 Mybatis 框架开发的一个工具,通过调用它提供的方法实现对单表的数据操作,不需要写任何 sql 语句,这极大地提高了项目开发效率. 二.怎么用? ...