利用神经网络算法的C#手写数字识别(二)




#region 潘正平新增加的
public List<Rectangle> _rowRctList;
public List<Rectangle> _currentWordRctsList;
public List<Rectangle> _currentCharRctsList;
public List<Bitmap> m_bitmaps;
int _irowIndex = 0;
int _iwordIndex = 0;
int _icharIndex;
Bitmap _originalBitmap;
Bitmap _currentRow;
Bitmap _currentWord; /// <summary>
/// 潘正平新加
/// </summary>
/// <param name="bitmap"></param>
public void PatternRecognitionThread(Bitmap bitmap)
{
m_bitmaps = new List<Bitmap>();
_originalBitmap = bitmap;
if (_rowRctList == null)
{
_rowRctList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_originalBitmap, 255, 30, 1, true, 5, 5);
_irowIndex = 0; }
foreach (Rectangle rowRect in _rowRctList)
{
_currentRow = AForge.Imaging.ImageResize.ImageCrop
(_originalBitmap, rowRect);
if (_iwordIndex == 0)
{
_currentWordRctsList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_currentRow, 255, 20, 10, false, 5, 5);
} foreach (Rectangle wordRect in _currentWordRctsList)
{
_currentWord = AForge.Imaging.ImageResize.ImageCrop
(_currentRow, wordRect);
_iwordIndex++;
if (_icharIndex == 0)
{
_currentCharRctsList =
AForge.Imaging.Image.PatternRectangeBoundaryList
(_currentWord, 255, 1, 1, false, 5, 5);
} foreach (Rectangle charRect in _currentCharRctsList)
{
Bitmap _currentChar = AForge.Imaging.ImageResize.ImageCrop
(_currentWord, charRect);
_icharIndex++;
Bitmap bmptemp = AForge.Imaging.ImageResize.FixedSize
(_currentChar, 21, 21);
bmptemp = AForge.Imaging.Image.CreateColorPad
(bmptemp, Color.White, 4, 4);
bmptemp = AForge.Imaging.Image.CreateIndexedGrayScaleBitmap
(bmptemp);
byte[] graybytes = AForge.Imaging.Image.GrayscaletoBytes(bmptemp);
PatternRecognizingThread(graybytes);
m_bitmaps.Add(bmptemp);
}
string s = " \n";
_form.Invoke(_form._DelegateAddObject, new Object[] { 1, s });
if (_icharIndex == _currentCharRctsList.Count)
{
_icharIndex = 0;
}
}
if (_iwordIndex == _currentWordRctsList.Count)
{
_iwordIndex = 0;
}
}
}
#endregion
#region 潘正平新增加的
private void OpenTestImagesToolStripMenuItem_Click(object sender, EventArgs e)
{
if (!_bTestingDataReady || !_MinstTestingDatabase.m_bDatabaseReady)
{
MessageBox.Show("请先加载测试数据库!");
return;
}
OpenFileDialog fDlg = new OpenFileDialog();
fDlg.Filter = "*.bmp|*.bmp|*.jpg|*.jpg";
if (fDlg.ShowDialog() == System.Windows.Forms.DialogResult.OK)
{
Bitmap bmp = new Bitmap(fDlg.FileName);
//this.pictureBoxMain.Image = bmp;
Bitmap bmp2 = new Bitmap(bmp);
this.ImagePatternRecognization(bmp2);
}
} private void ImagePatternRecognization(Bitmap bmp)
{
List<Mutex> mutexs = new List<Mutex>(2);
for (int i = 0; i < 2; i++)
{
var mutex = new Mutex();
mutexs.Add(mutex);
} NNTessing = new NNTestPatterns(_NN, _Mnistdatabase, _Preference, _bDatabaseReady, null, null, this, mutexs);
var thread = new Thread(() => NNTessing.PatternRecognitionThread(bmp));
thread.Start();
while(thread.IsAlive)
{
Application.DoEvents();
Thread.Sleep(10);
}
this.pictureBoxMain.Image = bmp;
this.pictureBoxMain.Refresh();
} NNTestPatterns NNTessing;
Pen pen = new Pen(Color.Red); private void pictureBoxMain_Paint(object sender, PaintEventArgs e)
{
if (NNTessing != null)
{
if (NNTessing._currentCharRctsList != null)
{
e.Graphics.DrawRectangles(pen, NNTessing._currentCharRctsList.ToArray());
}
if (NNTessing._currentWordRctsList != null)
{
e.Graphics.DrawRectangles(pen, NNTessing._currentWordRctsList.ToArray());
}
if (NNTessing._rowRctList != null)
{
e.Graphics.DrawRectangles(pen, NNTessing._rowRctList.ToArray());
}
}
}
#endregion


#region 潘正平新增加的
public List<Rectangle> _rowRctList;
public List<Rectangle> _currentWordRctsList;
public List<Rectangle> _currentWordCharRctsList;
public List<Bitmap> m_bitmaps;
int _irowIndex = 0;
int _iwordIndex = 0;
int _icharIndex;
Bitmap _originalBitmap;
Bitmap _currentRow;
Bitmap _currentWord; /// <summary>
/// 潘正平新加
/// </summary>
/// <param name="bitmap"></param>
public void PatternRecognitionThread(Bitmap bitmap)
{
_currentWordCharRctsList = new List<Rectangle>();
m_bitmaps = new List<Bitmap>();
_originalBitmap = bitmap;
if (_rowRctList == null)
{
_rowRctList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_originalBitmap, 255, 30, 1, true, 5, 5);
_irowIndex = 0; }
foreach (Rectangle rowRect in _rowRctList)
{
_currentRow = AForge.Imaging.ImageResize.ImageCrop
(_originalBitmap, rowRect);
if (_iwordIndex == 0)
{
_currentWordRctsList = AForge.Imaging.Image.PatternRectangeBoundaryList
(_currentRow, 255, 20, 10, false, 5, 5);
} foreach (Rectangle wordRect in _currentWordRctsList)
{
_currentWord = AForge.Imaging.ImageResize.ImageCrop
(_currentRow, wordRect);
_iwordIndex++;
List<Rectangle> _currentCharRctsList = new List<Rectangle>();
if (_icharIndex == 0)
{
_currentCharRctsList = AForge.Imaging.Image.PatternRectangeBoundaryList(_currentWord, 255, 1, 1, false, 5, 5);
}
string strWord = string.Empty;
foreach (Rectangle charRect in _currentCharRctsList)
{
Bitmap _currentChar = AForge.Imaging.ImageResize.ImageCrop(_currentWord, charRect);
_icharIndex++;
Bitmap bmptemp = AForge.Imaging.ImageResize.FixedSize(_currentChar, 21, 21);
bmptemp = AForge.Imaging.Image.CreateColorPad(bmptemp, Color.White, 4, 4);
bmptemp = AForge.Imaging.Image.CreateIndexedGrayScaleBitmap(bmptemp);
byte[] graybytes = AForge.Imaging.Image.GrayscaletoBytes(bmptemp);
strWord += PatternRecognizingThread(graybytes);
m_bitmaps.Add(bmptemp);
//
Rectangle rctCharAbsolute = new Rectangle(wordRect.Left + charRect.Left + rowRect.Left, wordRect.Top + charRect.Top + rowRect.Top, charRect.Width, charRect.Height);
this._currentWordCharRctsList.Add(rctCharAbsolute);
}
string s = " \n";
_form.Invoke(_form._DelegateAddObject, new Object[] { 1, s });
_form.Invoke(_form._DelegateAddObject, new Object[] { 8, strWord });
if (_icharIndex == _currentCharRctsList.Count)
{
_icharIndex = 0;
}
}
if (_iwordIndex == _currentWordRctsList.Count)
{
_iwordIndex = 0;
}
}
}
#endregion
利用神经网络算法的C#手写数字识别(二)的更多相关文章
- 【机器学习】k-近邻算法应用之手写数字识别
上篇文章简要介绍了k-近邻算法的算法原理以及一个简单的例子,今天再向大家介绍一个简单的应用,因为使用的原理大体差不多,就没有没有过多的解释. 为了具有说明性,把手写数字的图像转换为txt文件,如下图所 ...
- 卷积神经网络应用于tensorflow手写数字识别(第三版)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
- 基于sk_learn的k近邻算法实现-mnist手写数字识别且要求97%以上精确率
1. 导入需要的库 from sklearn.datasets import fetch_openml import numpy as np from sklearn.neighbors import ...
- MLP 之手写数字识别
0. 前言 前面我们利用 LR 模型实现了手写数字识别,但是效果并不好(不到 93% 的正确率). LR 模型从本质上来说还只是一个线性的分类器,只不过在线性变化之后加入了非线性单调递增 sigmoi ...
- 利用神经网络算法的C#手写数字识别
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwritten_character_recognition.zip 下载源码 - 70. ...
- 利用神经网络算法的C#手写数字识别(一)
利用神经网络算法的C#手写数字识别 转发来自云加社区,用于学习机器学习与神经网络 欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 下载Demo - 2.77 MB (原始地址):handwri ...
- C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写 ...
- 实现手写数字识别(数据集50000张图片)比较3种算法神经网络、灰度平均值、SVM各自的准确率—Jason niu
对手写数据集50000张图片实现阿拉伯数字0~9识别,并且对结果进行分析准确率, 手写数字数据集下载:http://yann.lecun.com/exdb/mnist/ 首先,利用图片本身的属性,图片 ...
- 利用c++编写bp神经网络实现手写数字识别详解
利用c++编写bp神经网络实现手写数字识别 写在前面 从大一入学开始,本菜菜就一直想学习一下神经网络算法,但由于时间和资源所限,一直未展开比较透彻的学习.大二下人工智能课的修习,给了我一个学习的契机. ...
随机推荐
- 极客mysql03
1.务的特性:原子性.一致性.隔离性.持久性 2.多事务同时执行的时候,可能会出现的问题:脏读.不可重复读.幻读 3.事务隔离级别:读未提交.读提交.可重复读.串行化 4.不同事务隔离级别的区别: 读 ...
- 剑指offer刷题(栈、堆、 队列、 图)
Stack & Queue 005-用两个栈实现队列 题目描述 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 push 和 pop ,分别完成在队列尾部插入整数和在队列头部删除整数 ...
- ceph客户端服务端属性匹配关系
ceph的server是定期会发布版本,而它的客户端是放到linux 内核当中的,一些属性的支持是依赖于内核版本的,这样就存在一些问题,一些功能后端支持,而客户端旧了:还有可能是客户端用的很新的内核, ...
- php批量转换时间戳
//批量转换时间戳 array_map(array($this, 'myfunction'),'时间戳数组'); //如 array('time1'=>11,'time2'=>2222); ...
- Spring Cloud实战 | 第九篇:Spring Cloud整合Spring Security OAuth2认证服务器统一认证自定义异常处理
本文完整代码下载点击 一. 前言 相信了解过我或者看过我之前的系列文章应该多少知道点我写这些文章包括创建 有来商城youlai-mall 这个项目的目的,想给那些真的想提升自己或者迷茫的人(包括自己- ...
- 企业级工作流解决方案(十)--集成Abp和ng-alain--权限系统
权限系统 应用系统离不开权限控制,权限中心不一定能抽象出所有的业务场景,这里定义的权限系统不一定能够满足所有的场景,但应该可以满足多数的业务需求. Abp的zero项目也定义了权限相关的表,但里面很多 ...
- 前端(web)知识-html
前端由三部分组成: HTML(标签)--CSS(美化,修饰)--JS(执行指令) HTML(超文本标记语言,Hypertext Markup Language):是一种用于创建网页的标记语言. 本质上 ...
- jQuery 第六章 实例方法 动画
.show() .hide() .toggle() .fadeIn() .fadeout() .fadeToggle() .fadeTo() .slideDown() .slideUp() .slid ...
- 对JVM的一个基础了解
1.JVM范围 2.JVM和class文件 (1).JVM和Java语言无关,JVM是一种规范,任何语言只要能编译成class文件格式都能在JVM上运行 3.class文件格式 (1).class文件 ...
- python接口测试2-开发WEB接口
首先要安装flask包: pip install flask 开发一个简单的API接口 # 1. 导入包 from flask import Flask, request # 2. 实例化一个 app ...