Yarn(Yet Another Resource Negotiator)是一个资源调度平台,负责为运算程序如Spark、MapReduce分配资源和调度,不参与用户程序内部工作。同样是Master/Slave架构。

以下图MapReduce提交到Yarn上运行为例,看看Yarn主要包括哪些核心组件以及每个组件的作用:

全局资源管理器(ResourceManager)

主节点,全局资源管理器,负责整个系统的资源管理和分配,主要由调度器和应用程序管理器组成。
调度器根据容量、队列等限制条件(如每个队列分配多少资源、最多执行一定数量的作业等)将系统中资源分配给各个正在运行的应用程序。
应用程序管理器(ApplicationsManager)负责管理整个系统中所有应用程序,包括应用程序提交、与调度器协商资源以启动、监控Application Master,并且在失败时重新启动它等

节点资源管理器(NodeManager) 

从节点,每个节点上的资源和任务管理器,它需要向ResourceManager汇报本节点上的资源使用情况和各个Container的运行状态,同时接收并处理来自Application Master的Container启动/停止等各种请求

应用管理器(Application Master)

用户提交的每个应用程序均包含1个应用管理器,对应到运行MapReduce为MRAppMaster,主要功能包括:

1. 向全局资源管理器申请资源

2. 将得到的资源进一步分配给内部的任务

3. 与节点资源管理器通信以启动/停止任务

4. 监控所有任务运行状态,并在任务运行失败时重新为任务申请资源以重启任务

Container

可以理解为Yarn中为某个节点已经申请到的资源封装的类,资源如内存、CPU等,是根据应用程序需求动态生成的,是Yarn中基本资源划分单位。一个NodeManager节点上同时存在多个Container。提交作业的每个task都运行在Container中

Yarn调度器

根据一些限制条件如每个队列分配多少资源、最多执行多少数量的作业,将系统中资源按照应用程序的资源需求分配给各个应用程序,资源分配单位就是上文提到的container,并且用户可以根据自己的需求设计新的调度器,目前Yarn也提供了多种可直接使用的调度器:

FIFOScheduler(先进先出调度器):不支持抢占先机。如果有运行特别慢的任务,会影响其他任务

FairScheduler(公平调度器):每个用户公平共享集群资源,支持抢占先机,如果有的任务长时间占用大量资源,超出其应该分配的资源比例,会终止得到过多资源的任务

CapacityScheduler(容量调度器):有层次结构的队列,每个队列分配一定的容量(比如将小job和大job分配到不同的队列),单个队列内部支持FIFO

笔者强调:

1. Yarn并不清楚用户提交程序的运行机制,只提供运算资源的调度(用户程序向yarn申请资源,yarn负责分配资源)

2. Yarn中的主管角色是ResourceManager,具体提供运算资源的角色是NodeManager

3. Yarn与运行的用户程序完全解耦,意味着Yarn上可以运行各种类型的分布式运算程序,如Spark、MapReduce、Storm、Tez等,前提是这些技术框架中有符合Yarn规范的资源请求机制即可

4. 因为Yarn不参与用户程序的执行等,使得Yarn成为一个通用的资源调度平台。企业中以前存在的各种计算引擎集群都可以整合在一个资源管理平台上,提高资源利用率

5. 调度器不参与任何与具体应用程序相关的工作,如不负责监控或者跟踪应用的执行状态等,也不负责重新启动因应用执行失败或者硬件故障而产生的失败任务,这些均交由应用程序相关的Application Master完成。


关注微信公众号:大数据学习与分享,获取更对技术干货

不可不知的资源管理调度器Hadoop Yarn的更多相关文章

  1. YARN调度器(Scheduler)详解

    理想情况下,我们应用对Yarn资源的请求应该立刻得到满足,但现实情况资源往往是有限的,特别是在一个很繁忙的集群,一个应用资源的请求经常需要等待一段时间才能的到相应的资源.在Yarn中,负责给应用分配资 ...

  2. Hadoop YARN介绍

    YARN产生背景 MRv1的局限 YARN是在MRv1基础上演化而来的,它克服了MRv1中的各种局限性.在正式介绍YARN之前,先了解下MRv1的一些局限性,主要有以下几个方面: 扩展性差.在MRv1 ...

  3. Hadoop Yarn 框架原理及运作机制及与MapReduce比较

    Hadoop 和 MRv1 简单介绍 Hadoop 集群可从单一节点(其中所有 Hadoop 实体都在同一个节点上运行)扩展到数千个节点(其中的功能分散在各个节点之间,以增加并行处理活动).图 1 演 ...

  4. Hadoop - YARN 概述

    一 概述       Apache Hadoop YARN (Yet Another Resource Negotiator,还有一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源 ...

  5. MapReduce调度器

    1. 先进先出(FIFO)调度器 先进先出调度器是Hadoop的默认调度器.就像这个名字所隐含的那样,这种调度器就是用简单按照“先到先得”的算法来调度任务的.例如,作业A和作业B被先后提交.那么在执行 ...

  6. 2016/09/27 Hadoop Yarn

    1.1 YARN基本架构     YARN是Hadoop2.0中的资源管理系统,它的基本设计思想是将MRv1中的JobTracker拆分成了两个独立的服务:一个全局的资源管理器ResourceMana ...

  7. Hadoop Yarn调度器的选择和使用

    一.引言 Yarn在Hadoop的生态系统中担任了资源管理和任务调度的角色.在讨论其构造器之前先简单了解一下Yarn的架构. 上图是Yarn的基本架构,其中ResourceManager是整个架构的核 ...

  8. Hadoop YARN 调度器(scheduler) —— 资源调度策略

    本文通过MetaWeblog自动发布,原文及更新链接:https://extendswind.top/posts/technical/hadoop_yarn_resource_scheduler 搜了 ...

  9. hadoop之 Yarn 调度器Scheduler详解

    概述 集群资源是非常有限的,在多用户.多任务环境下,需要有一个协调者,来保证在有限资源或业务约束下有序调度任务,YARN资源调度器就是这个协调者. YARN调度器有多种实现,自带的调度器为Capaci ...

随机推荐

  1. Docker实战(7):Docker无日志(无*-json.log文件)

    出现这种情况基本都是docker 版本太旧,我的处理方案就是将docker 版本升级到最新,然后重新docker run 一遍就会有了.注意:docker 升级后,原来images,容器会出现一些小问 ...

  2. hystrix(1) 概述

    首先我们来讲一下hystrix解决什么问题.在大型分布式系统中经常会存在下面的几类问题: 1.大型分布式系统中,服务之间相互依赖,如果依赖的服务发生异常,那么当前服务也会出现异常,这样将会导致联级的服 ...

  3. python实现多分类评价指标

    1.什么是多分类? 参考:https://www.jianshu.com/p/9332fcfbd197 针对多类问题的分类中,具体讲有两种,即multiclass classification和mul ...

  4. 通过adrci ips打包incident给oracle

    1.adrci查看incident 2.show home 3.set home adrci> set home diag/rdbms/mesdb/mesdb1 4.show incident ...

  5. spring-dao.xml通常写法

    <?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.spr ...

  6. 关于Apache报错 couldn't perform authentication. AuthType not set!

    今天在使用apache搭建yum的web服务时,配置完成后.访问http://ip 时,浏览器报错:500 Internal Server Error 然后查询error.log发现,有如下错误提示: ...

  7. Java Web学习(十一)Java过滤器

    一.引言 上一篇文章学习了java三大器的拦截器,拦截器主要是针对于action请求进行拦截处理的,那么对于requst的一些信息如果在调用前,想先进行过滤和处理,那么就要使用到第二个神器,也就是本文 ...

  8. 从CPU缓存看缓存的套路

    一.前言 不同存储技术的访问时间差异很大,从 计算机层次结构 可知,通常情况下,从高层往底层走,存储设备变得更慢.更便宜同时体积也会更大,CPU 和内存之间的速度存在着巨大的差异,此时就会想到计算机科 ...

  9. HashMap,HashSet,HashTable,LinkedHashMap,LinkedHashSet,ArrayList,LinkedList,ConcurrentHashMap,Vector 区别

    ConcurrentHashMap是弱一致性,也就是说遍历过程中其他线程可能对链表结构做了调整,因此get和containsKey返回的可能是过时的数据 ConcurrentHashMap是基于分段锁 ...

  10. Emit动态生成代理类用于监控对象的字段修改

    利用Emit动态生成代理对象监控对象哪些字段被修改,被修改为什么值 被Register的对象要监控的值必须是Virtual虚类型 必须使用CreateInstance创建对象 必须使用DynamicP ...