BZOJ1559[JSOI2009]密码——AC自动机+DP+搜索
题目描述

输入

输出

样例输入
hello
world
样例输出
helloworld
worldhello
提示
这题算是一个套路题了,多个串求都包含它们的长为L的串的方案数。
显然是一个在AC自动机(trie图)上DP,常规DP状态是f[i][j]表示在AC自动机上走了i步到达了j节点的方案数。
但这道题还要求包含所有模式串,而且模式串最多10个,因此再加一维f[i][j][k]表示在AC自动机上走了i步到达了j节点,已经包含的字符串状态为k的方案数,其中k是一个二进制状态。
但我们发现如果一个串x是另一个串y的子串,那么只要包含y就一定包含x,因此在DP之前还要去掉被包含的串。
我去掉被包含串的方法是当一个终止节点有子节点(在找fail指针之前)或者一个终止节点被其他点通过fail指针指向(在找fail指针之后),那么说明这个串被包含,就将他的终止标记删掉。
剩下还有输出方案,因为只在方案数<=42时输出,所以方案一定是由模式串组成并且相邻模式串首尾重复部分一定要去重。
为什么?
因为假如有一个随机字符,只有一个模式串,那么他们的方案数就是2*26=52>42,所以一定不包含随机字符。
而如果不将相邻模式串去重就能到达长度为L,那么去重之后就会出现随机字符,方案数还是会超过42。
综上所述,密码串就是由所有模式串(不包括是其他串子串的串)的排列组成,最多就10个串,预处理出任意两个模式串的重叠长度,爆搜一下就好了。
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<cmath>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
int s[120][30];
int fail[120];
int num[120];
long long f[3][120][1025];
int n,L,m;
int cnt;
char ch[30][30];;
int vis[120];
long long ans;
char res[50][30];
int lk[30][30];
int q[30];
int tot;
int v[30];
int rank[30];
int que[30];
void build(char *ch,int k)
{
int len=strlen(ch);
int now=0;
for(int i=0;i<len;i++)
{
int x=ch[i]-'a';
if(!s[now][x])
{
s[now][x]=++cnt;
}
now=s[now][x];
}
vis[now]=k;
}
void get_fail()
{
queue<int>q;
for(int i=0;i<26;i++)
{
if(s[0][i])
{
q.push(s[0][i]);
fail[s[0][i]]=0;
}
}
while(!q.empty())
{
int now=q.front();
q.pop();
for(int i=0;i<26;i++)
{
if(s[now][i])
{
fail[s[now][i]]=s[fail[now]][i];
q.push(s[now][i]);
}
else
{
s[now][i]=s[fail[now]][i];
}
}
}
}
void find_end()
{
for(int i=1;i<=cnt;i++)
{
if(vis[i])
{
for(int j=0;j<26;j++)
{
if(s[i][j])
{
vis[i]=0;
break;
}
}
}
}
get_fail();
for(int i=1;i<=cnt;i++)
{
if(vis[fail[i]])
{
vis[fail[i]]=0;
}
}
for(int i=1;i<=cnt;i++)
{
if(vis[i])
{
m++;
q[m]=vis[i];
num[i]=1<<(m-1);
}
}
}
void dp()
{
f[0][0][0]=1;
for(int i=0;i<L;i++)
{
memset(f[(i+1)&1],0,sizeof(f[(i+1)&1]));
for(int j=0;j<=cnt;j++)
{
for(int k=0;k<=(1<<m)-1;k++)
{
if(f[i&1][j][k])
{
for(int l=0;l<26;l++)
{
int x=s[j][l];
f[(i+1)&1][x][k|num[x]]+=f[i&1][j][k];
}
}
}
}
}
for(int i=0;i<=cnt;i++)
{
ans+=f[L&1][i][(1<<m)-1];
}
}
int get_lk(int x,int y)
{
int i,j;
bool flag;
int lx=strlen(ch[x]);
int ly=strlen(ch[y]);
for(i=min(lx,ly);i>0;i--)
{
flag=1;
for(j=0;j<i;j++)
{
if(ch[x][lx-i+j]!=ch[y][j])
{
flag=0;
break;
}
}
if(flag)
{
break;
}
}
return i;
}
void dfs(int dep)
{
if(dep>m)
{
tot++;
int l=0;
for(int i=1;i<dep;i++)
{
int len=strlen(ch[que[i]]);
for(int j=lk[que[i-1]][que[i]];j<len;j++)
{
res[tot][l]=ch[que[i]][j];
l++;
}
}
if(l!=L)
{
tot--;
}
return ;
}
for(int i=1;i<=m;i++)
{
if(!v[i])
{
v[i]=1;
que[dep]=q[i];
dfs(dep+1);
v[i]=0;
}
}
}
int cmp(int x,int y)
{
for(int i=0;i<L;i++)
{
if(res[x][i]!=res[y][i])
{
return res[x][i]<res[y][i];
}
}
return 0;
}
int main()
{
scanf("%d%d",&L,&n);
for(int i=1;i<=n;i++)
{
scanf("%s",ch[i]);
build(ch[i],i);
}
find_end();
dp();
printf("%lld\n",ans);
for(int i=1;i<=m;i++)
{
for(int j=1;j<=m;j++)
{
lk[q[i]][q[j]]=get_lk(q[i],q[j]);
}
}
if(ans<=42)
{
dfs(1);
for(int i=1;i<=tot;i++)
{
rank[i]=i;
}
sort(rank+1,rank+tot+1,cmp);
for(int i=1;i<=tot;i++)
{
for(int j=0;j<L;j++)
{
printf("%c",res[rank[i]][j]);
}
printf("\n");
}
}
}
BZOJ1559[JSOI2009]密码——AC自动机+DP+搜索的更多相关文章
- [BZOJ1559][JSOI2009]密码(AC自动机)
http://www.lydsy.com/JudgeOnline/problem.php?id=1559 2009年的省选题虽然比起现在简单了不少,但对我来说还是很有挑战性的. 首先对于这种多串匹配问 ...
- BZOJ 1559: [JSOI2009]密码( AC自动机 + 状压dp )
建AC自动机后, dp(x, y, s)表示当前长度为x, 在结点y, 包括的串的状态为s的方案数, 转移就在自动机上走就行了. 对于输出方案, 必定是由给出的串组成(因为<=42), 所以直接 ...
- [JSOI2009]密码 [AC自动机]
题面 bzoj luogu 首先看到这题就知道随便暴枚 只要是多项式算法都能过 先常规建AC自动机 注意被别的单词包含的单词没有存在的价值 剩余单词状压 大力dp f[长度][节点编号][状态] \( ...
- [BZOJ 1559] [JSOI2009] 密码 【AC自动机DP】
题目链接:BZOJ - 1559 题目分析 将给定的串建成AC自动机,然后在AC自动机上状压DP. 转移边就是Father -> Son 或 Now -> Fail. f[i][j][k] ...
- HDU 2457 DNA repair(AC自动机+DP)题解
题意:给你几个模式串,问你主串最少改几个字符能够使主串不包含模式串 思路:从昨天中午开始研究,研究到现在终于看懂了.既然是多模匹配,我们是要用到AC自动机的.我们把主串放到AC自动机上跑,并保证不出现 ...
- POJ1625 Censored!(AC自动机+DP)
题目问长度m不包含一些不文明单词的字符串有多少个. 依然是水水的AC自动机+DP..做完后发现居然和POJ2778是一道题,回过头来看都水水的... dp[i][j]表示长度i(在自动机转移i步)且后 ...
- HDU2296 Ring(AC自动机+DP)
题目是给几个带有价值的单词.而一个字符串的价值是 各单词在它里面出现次数*单词价值 的和,问长度不超过n的最大价值的字符串是什么? 依然是入门的AC自动机+DP题..不一样的是这题要输出具体方案,加个 ...
- HDU2457 DNA repair(AC自动机+DP)
题目一串DNA最少需要修改几个基因使其不包含一些致病DNA片段. 这道题应该是AC自动机+DP的入门题了,有POJ2778基础不难写出来. dp[i][j]表示原DNA前i位(在AC自动机上转移i步) ...
- hdu 4117 GRE Words AC自动机DP
题目:给出n个串,问最多能够选出多少个串,使得前面串是后面串的子串(按照输入顺序) 分析: 其实这题是这题SPOJ 7758. Growing Strings AC自动机DP的进阶版本,主题思想差不多 ...
随机推荐
- 【Codeforces 1132C】Painting the Fence
Codeforces 1132 C 题意:给一些区间\([l_i,r_i]\),从中删掉两个,求剩下的区间最多能够覆盖的格子数量. 思路:首先枚举第一个删掉的区间,然后我们可以通过差分来求出每个格子被 ...
- Django 学习 (第四部)
1.Django请求的生命周期 首先是url---->路由系统 -> 试图函数(获取模板+数据=>渲染) -> 字符串返回给用户2.路由系统{建立路由关系urls.py (fu ...
- ASP.NET Core如何设置请求超时时间
如果一个请求在ASP.NET Core中运行太久,会导致请求超时,目前ASP.NET Core对请求超时的设置比较麻烦,本文列出目前收集到的一些方法,供大家参考. 部署ASP.NET Core到IIS ...
- MySql 数据库移植记录
在使用长文本时,SqlServer 在以下情况下工作正常 [Property("CContent", ColumnType = "StringClob", Le ...
- Linux下安装jdk+maven +git
Linux系统下的操作,一直不是很熟悉.作为一名java开发工程师,感到很惭愧.因此把自己的阿里云服务器安装环境相关的东西给记录下来,方便后续查阅. 本文所采用的Lin ...
- Luogu P2002 消息扩散&&P1262 间谍网络
怕自己太久没写Tarjan了就会把这种神仙算法忘掉. 其实这种类型的图论题的套路还是比较简单且显然的. P2002 消息扩散 很显然的题目,因为在一个环(其实就是强连通分量)中的城市都只需要让其中一个 ...
- SPI内容随笔
关于SPI的通信: SPI采用的是主从模式的同步通信,通过时钟来控制:一般情况下,使用双向全双工,收发的数据放在缓冲器FIFO中.数据的传输是主SPI的时钟在控制,从机是不能产生时钟的,如果没有时钟, ...
- 介绍HTTP协议的传输过程
1.HTTP是面向事物的应用层协议,它使用TCP连接进行可靠传输,服务器默认监听在80端口 2.服务流程 从协议执行过程来说,当浏览器要访问www服务器时,首先要对服务器进行域名解析(DNS协议).一 ...
- Intel x86_64 Architecture Background 3
多层次的cache结构解决了CPU和DRAM之间处理速度不一致的问题,在Intel体系架构下,CPU核心和主存DRAM之间有着三层的cache.其中一层缓存L1和二层缓存L2在CPU核心(core)中 ...
- 【变态需求】bootstrapTable列排序-选择正序倒序不排序
产品经理:那个table排序能不能点击后弹个选项选择正序倒序不排序? -- 那个是bootstrapTable的插件!不支持!改不了!! 注意:数据上假的,效果看http请求参数进行脑补 这是boot ...