这题CF给的难度是2000,但我感觉没这么高啊……

题目链接:CF原网

题目大意:有两个正整数序列 $a,b$,长度分别为 $n,m$。给出所有 $a_i$ 和 $b_j(1\le i\le n,1\le j\le m)$ 的大小关系(大于,小于或者等于),请构造出符合条件的 $a$ 和 $b$。如果无解,输出NO。如果有多个解,输出 $a,b$ 中最大元素最小的方案。

$1\le n,m\le 1000$。


这题一眼差分约束。但是看着没有具体的数字……(主要是我不会打)

然而二眼就是拓扑排序。每次将小的数往大的数连边,然后跑拓扑排序。规定一开始入度为 $0$ 的点的值为 $1$,然后拓扑时简单转移一下就好了。如果有点没有被遍历到(就是大小关系有环),那么显然无解。

不过有相同的元素……看着不好搞……

算了,直接上并查集。把相同的元素压到一个集合,然后把这些点看成一个点操作。

时间复杂度 $O(nm)$。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,m,el,head[],to[maxn],nxt[maxn],q[],h=,r,deg[],fa[],val[maxn];
char mp[][];
bool vis[];
inline void add(int u,int v){
to[++el]=v;nxt[el]=head[u];head[u]=el;deg[v]++;
}
int getfa(int x){
return x==fa[x]?x:fa[x]=getfa(fa[x]);
}
void unite(int x,int y){
x=getfa(x);y=getfa(y);
if(x!=y) fa[x]=y;
}
int main(){
n=read();m=read();
FOR(i,,n) scanf("%s",mp[i]+);
FOR(i,,n+m) fa[i]=i;
FOR(i,,n) FOR(j,,m) if(mp[i][j]=='=') unite(i,j+n);
FOR(i,,n) FOR(j,,m){
if(mp[i][j]=='<') add(getfa(i),getfa(j+n));
if(mp[i][j]=='>') add(getfa(j+n),getfa(i));
}
FOR(i,,n+m) if(i==getfa(i) && !deg[i]) q[++r]=i,val[i]=,vis[i]=true;
while(h<=r){
int u=q[h++];
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(vis[v]) continue;
if(!--deg[v]){
vis[v]=true;
val[v]=val[u]+;
q[++r]=v;
}
}
}
FOR(i,,n+m) if(i==getfa(i) && !vis[i]) return puts("No"),;
puts("Yes");
FOR(i,,n) printf("%d ",val[getfa(i)]);
puts("");
FOR(i,,m) printf("%d ",val[getfa(i+n)]);
}

CF1131D Gourmet choice(并查集,拓扑排序)的更多相关文章

  1. 并查集+拓扑排序 赛码 1009 Exploration

    题目传送门 /* 题意:无向图和有向图的混合图判环: 官方题解:首先对于所有的无向边,我们使用并查集将两边的点并起来,若一条边未合并之前, 两端的点已经处于同一个集合了,那么说明必定存在可行的环(因为 ...

  2. HDU 1811:Rank of Tetris(并查集+拓扑排序)

    http://acm.hdu.edu.cn/showproblem.php?pid=1811 Rank of Tetris Problem Description   自从Lele开发了Rating系 ...

  3. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  4. D. Gourmet choice并查集,拓扑结构

    D. Gourmet choice time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  5. hdu 1811Rank of Tetris (并查集 + 拓扑排序)

    /* 题意:这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B ...

  6. 【并查集+拓扑排序】【HDU1811】【Rank of Tetris】

    题意:给你3种关系 A=B,A>B,A<B 问是否排名方式唯一,或者存在矛盾 解 1.读入数据先处理 =号 用并查集的祖先作为代表元素,其他儿子节点都等于跟这个点重叠. 再读入 '< ...

  7. Codeforces Round #541 (Div. 2) D 并查集 + 拓扑排序

    https://codeforces.com/contest/1131/problem/D 题意 给你一个n*m二维偏序表,代表x[i]和y[j]的大小关系,根据表构造大小分别为n,m的x[],y[] ...

  8. HDU 1811 Rank of Tetris(并查集+拓扑排序 非常经典)

    Rank of Tetris Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  9. HDU 1811(并查集+拓扑排序)题解

    Problem Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球.为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他 ...

  10. HDU 5222 ——Exploration——————【并查集+拓扑排序判有向环】

    Exploration Time Limit: 30000/15000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)T ...

随机推荐

  1. POJ1850&&1019&&1942

    这三道题都水的难以想象,所以就放在一起写 1850 题目大意:有一种一种序列排列方式(如同题目中给出的例子),然后给你一个序列,问你这个序列的排名 首先我们先判断无解的情况,这个就很简单了. 由于题目 ...

  2. Luogu P1341 无序字母对

    突然发现我现在很喜欢打图论题. 然而都是很easy的. 这道题很坑,用C++打了一遍莫名Too many or too few lines. 然后我打出了我的独门绝技Pascal.这可能是我最后一次用 ...

  3. 洛谷 P4409 [ZJOI2006] 皇帝的烦恼

    题目链接-> OVO 题解: 很久没有写博客了,可能是因为最近太颓废了吧. 刚刚考完期末考试,无比期盼早点外出学习,不要面对成绩,害怕. #include <cstdio> #inc ...

  4. OpenBLAS简介及在Windows7 VS2013上源码的编译过程

    OpenBLAS(Open Basic Linear Algebra Subprograms)是开源的基本线性代数子程序库,是一个优化的高性能多核BLAS库,主要包括矩阵与矩阵.矩阵与向量.向量与向量 ...

  5. HTTP Error 500.22 - Internal Server Error 错误解决方案

    1. 首先进入IIS ,配置IIS 应用程序池的.Net Framework版本 2. 点击左侧应用程序池,再单机右侧设置,选择版本 3. 设置为经典模式 如若遇到以下错误: 解决方案:删除confi ...

  6. centos7下安装php+memcached简单记录

    1)centos7下安装php 需要再添加一个yum源来安装php-fpm,可以使用webtatic(这个yum源对国内网络来说恐怕有些慢,当然你也可以选择其它的yum源) [root@nextclo ...

  7. kvm虚拟化管理平台WebVirtMgr部署-完整记录(1)

    公司机房有一台2U的服务器(64G内存,32核),由于近期新增业务比较多,测试机也要新增,服务器资源十分有限.所以打算在这台2U服务器上部署kvm虚拟化,虚出多台VM出来,以应对新的测试需求.当KVM ...

  8. MFS+Keepalived双机高可用热备方案操作记录

    基于MFS的单点及手动备份的缺陷,考虑将其与Keepalived相结合以提高可用性.在Centos下MooseFS(MFS)分布式存储共享环境部署记录这篇文档部署环境的基础上,只需要做如下改动: 1) ...

  9. python-编码-15

    ascii A : 00000010 8位 一个字节 unicode A : 00000000 00000001 00000010 00000100 32位 四个字节 中:00000000 00000 ...

  10. 《Linux内核设计与分析》第四章读书笔记

    <内核设计与实现>第四章读书笔记 第四章:进程调度 进程(操作系统)程序的运行态表现形式. 进程调度程序,它是确保进程能有效工作的一个内核子系统. 调度程序负责决定将哪个进程投入运行,何时 ...