CF1131D Gourmet choice(并查集,拓扑排序)
这题CF给的难度是2000,但我感觉没这么高啊……
题目链接:CF原网
题目大意:有两个正整数序列 $a,b$,长度分别为 $n,m$。给出所有 $a_i$ 和 $b_j(1\le i\le n,1\le j\le m)$ 的大小关系(大于,小于或者等于),请构造出符合条件的 $a$ 和 $b$。如果无解,输出NO。如果有多个解,输出 $a,b$ 中最大元素最小的方案。
$1\le n,m\le 1000$。
这题一眼差分约束。但是看着没有具体的数字……(主要是我不会打)
然而二眼就是拓扑排序。每次将小的数往大的数连边,然后跑拓扑排序。规定一开始入度为 $0$ 的点的值为 $1$,然后拓扑时简单转移一下就好了。如果有点没有被遍历到(就是大小关系有环),那么显然无解。
不过有相同的元素……看着不好搞……
算了,直接上并查集。把相同的元素压到一个集合,然后把这些点看成一个点操作。
时间复杂度 $O(nm)$。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> PII;
const int maxn=;
#define MP make_pair
#define PB push_back
#define lson o<<1,l,mid
#define rson o<<1|1,mid+1,r
#define FOR(i,a,b) for(int i=(a);i<=(b);i++)
#define ROF(i,a,b) for(int i=(a);i>=(b);i--)
#define MEM(x,v) memset(x,v,sizeof(x))
inline int read(){
char ch=getchar();int x=,f=;
while(ch<'' || ch>'') f|=ch=='-',ch=getchar();
while(ch>='' && ch<='') x=x*+ch-'',ch=getchar();
return f?-x:x;
}
int n,m,el,head[],to[maxn],nxt[maxn],q[],h=,r,deg[],fa[],val[maxn];
char mp[][];
bool vis[];
inline void add(int u,int v){
to[++el]=v;nxt[el]=head[u];head[u]=el;deg[v]++;
}
int getfa(int x){
return x==fa[x]?x:fa[x]=getfa(fa[x]);
}
void unite(int x,int y){
x=getfa(x);y=getfa(y);
if(x!=y) fa[x]=y;
}
int main(){
n=read();m=read();
FOR(i,,n) scanf("%s",mp[i]+);
FOR(i,,n+m) fa[i]=i;
FOR(i,,n) FOR(j,,m) if(mp[i][j]=='=') unite(i,j+n);
FOR(i,,n) FOR(j,,m){
if(mp[i][j]=='<') add(getfa(i),getfa(j+n));
if(mp[i][j]=='>') add(getfa(j+n),getfa(i));
}
FOR(i,,n+m) if(i==getfa(i) && !deg[i]) q[++r]=i,val[i]=,vis[i]=true;
while(h<=r){
int u=q[h++];
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(vis[v]) continue;
if(!--deg[v]){
vis[v]=true;
val[v]=val[u]+;
q[++r]=v;
}
}
}
FOR(i,,n+m) if(i==getfa(i) && !vis[i]) return puts("No"),;
puts("Yes");
FOR(i,,n) printf("%d ",val[getfa(i)]);
puts("");
FOR(i,,m) printf("%d ",val[getfa(i+n)]);
}
CF1131D Gourmet choice(并查集,拓扑排序)的更多相关文章
- 并查集+拓扑排序 赛码 1009 Exploration
题目传送门 /* 题意:无向图和有向图的混合图判环: 官方题解:首先对于所有的无向边,我们使用并查集将两边的点并起来,若一条边未合并之前, 两端的点已经处于同一个集合了,那么说明必定存在可行的环(因为 ...
- HDU 1811:Rank of Tetris(并查集+拓扑排序)
http://acm.hdu.edu.cn/showproblem.php?pid=1811 Rank of Tetris Problem Description 自从Lele开发了Rating系 ...
- Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)
D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: = 的情况我们用并查集把他们扔到一个集合,然后根据 > ...
- D. Gourmet choice并查集,拓扑结构
D. Gourmet choice time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- hdu 1811Rank of Tetris (并查集 + 拓扑排序)
/* 题意:这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B ...
- 【并查集+拓扑排序】【HDU1811】【Rank of Tetris】
题意:给你3种关系 A=B,A>B,A<B 问是否排名方式唯一,或者存在矛盾 解 1.读入数据先处理 =号 用并查集的祖先作为代表元素,其他儿子节点都等于跟这个点重叠. 再读入 '< ...
- Codeforces Round #541 (Div. 2) D 并查集 + 拓扑排序
https://codeforces.com/contest/1131/problem/D 题意 给你一个n*m二维偏序表,代表x[i]和y[j]的大小关系,根据表构造大小分别为n,m的x[],y[] ...
- HDU 1811 Rank of Tetris(并查集+拓扑排序 非常经典)
Rank of Tetris Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- HDU 1811(并查集+拓扑排序)题解
Problem Description 自从Lele开发了Rating系统,他的Tetris事业更是如虎添翼,不久他遍把这个游戏推向了全球.为了更好的符合那些爱好者的喜好,Lele又想了一个新点子:他 ...
- HDU 5222 ——Exploration——————【并查集+拓扑排序判有向环】
Exploration Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)T ...
随机推荐
- [UWP 自定义控件]了解模板化控件(2):模仿ContentControl
ContentControl是最简单的TemplatedControl,而且它在UWP出场频率很高.ContentControl和Panel是VisualTree的基础,可以说几乎所有VisualTr ...
- Name方法
重命名磁盘文件.目录或文件夹. 语法 Name 旧路径名称 As 新路径名称 “Name”**** 语句语法包含以下部分: 部分 说明 旧路径名称 必需. 字符串表达式,指定现有的文件名和位置;可能包 ...
- Linux服务器性能压力测试
对于新采购的服务器,需要进行有必要的性能测试.这里选择UnixBench工具进行性能测试.记录如下: 1)安装使用下面的脚本使用了最新版UnixBench5.1.3来测试,注释了关于graphic的测 ...
- Visual studio2015 编译时提示“GenerateResource”任务意外失败。
今天弄了一个winfrom程序,狗血,一直报错,在另一台电脑上就不报错. 错误如下图 其实这样也能运行,但就是代码改之后,没有办法调试.搜了很久,发现了一种解决办法,完美解决. 最终成功了.
- git工具
1.Git Bash常用命令: pwd 当前工作目录 clear 清屏 ls 列举当前目录下的文件及文件夹 cd 更改目录 mkdir 创建目录 touch 创建空文件 cp 拷 ...
- JUnit4 单元测试
一. 题目简介 这次的单元测试我作了一个基本运算的程序,该程序实现了加,减,乘,除,平方,倒数的运算,该程序进行测试比较的简单,对于初步接触JUnit的我来说测试起来也比较容易理解. 二.源码的git ...
- 量产救U盘
同事U盘不能格式化,快速格式化失败,非快速格式化也失败.就问谁有360安全软件,试试能不能格式化. 我说我有火绒,但是不知道火绒并没有格式化U盘的功能(应该没有吧,反正我找了以后没找到) 那怎么办呢? ...
- Netty4ClientHttpRequest代码赏析
private static int getPort(URI uri) { int port = uri.getPort(); if (port == -1) { if ("http&quo ...
- 推荐一个php7+ mongodb三方类
373 次阅读 · 读完需要 8 分钟 5 由于项目需要,把项目升级到了php7.但是升级了之后发现mongo扩展不能用了.php7.0以上只支持mongodb扩展了.而mongodb扩展的驱 ...
- [转帖]IIS内虚拟站点配置信息说明
web.config配置详细说明 https://www.cnblogs.com/zhangxiaolei521/p/5600607.html 原作者总结的很详细 但是没有完全的看完 自己对IIS 的 ...