【BZOJ】2115: [Wc2011] Xor
http://www.lydsy.com/JudgeOnline/problem.php?id=2115
题意:给出一个n个点m条边的无向连通边加权图,求1~n的某条路径使得异或值最大(可以重复点可以重复边)(n<=50000, m<=100000)
#include <bits/stdc++.h>
using namespace std;
const int N=50005, M=100015;
typedef long long ll;
struct E { int next, to; ll w; }e[M<<1];
int cnt, ihead[N], tot, n, m;
ll d[N], q[M*10], a[65];
void add(int u, int v, ll c) {
e[++cnt]=(E){ihead[u], v, c}; ihead[u]=cnt;
e[++cnt]=(E){ihead[v], u, c}; ihead[v]=cnt;
}
bool vis[N];
void dfs(int x) {
vis[x]=1;
for(int i=ihead[x]; i; i=e[i].next)
if(!vis[e[i].to]) d[e[i].to]=d[x]^e[i].w, dfs(e[i].to);
else q[++tot]=d[e[i].to]^d[x]^e[i].w;
}
int main() {
scanf("%d%d", &n, &m);
for(int i=0; i<m; ++i) { int x, y; ll w; scanf("%d%d%lld", &x, &y, &w); add(x, y, w); }
dfs(1);
for(int i=1; i<=tot; ++i)
for(int j=60; j>=0; --j) if((q[i]>>j)&1) {
if(!a[j]) { a[j]=q[i]; break; }
else q[i]^=a[j];
}
ll ans=d[n];
for(int j=60; j>=0; --j) if(!((ans>>j)&1)) ans^=a[j];
printf("%lld\n", ans);
return 0;
}
//PS:一下都是在本人什么都不懂的情况下乱写的,大家请有选择性的查看= =.....(体现了sb iwtwiioi是多么的弱(我就懒得删了..反正大概就是找出一组线性无关的元素,然后就能组成整个向量空间了= =然后就行了..
好题不解释..
首先去学习了一下线性基。这里说的线性基在这里具体是指某个向量数组在xor操作下形成的封闭集合中的线性无关量。我们求出这些基后就能很简单的贪心求出答案了。
然后再学习了一个特殊的性质= =在生成树上的非树边所形成的环在xor的情况下能表示出所有环的xor值(这个yy了好久证明不出,只能手工验证正确性..大概就是每一个非树边都存在有且一个所求出的环中,然后用一些环进行xor抵消掉一些树边然后就形成了新的环)
基的个数上界就是$O(log(n))$
然后我们只需要通过高斯消元求出每一位都独立的一个元素那么可以当成一个基,最后一定会出现一组基...大小为$O(log(n)), n为向量的大小$,也就是说,某个基的最高位存在而其它基都不存在这个位。
由于xor操作的封闭性,我们只需要像高斯消元一样消去某一位上其它元素的值即可。
回到本题...
由于一条1~n的路径可以由任意一条1~n的简单路径加上任意个环组成。(从简单路径中进入环的路径和出环的路径(同一条)xor抵消)
由之前所说,非树边的环可以线性组成所有环的xor值,所以我们直接搞就行了...
(ps:诶呀诶呀一定要强拉到基吗...最好理解的就是,我要贪心,所以我要变成一些数使得最高位只有一个数有其他数没有,而且这些数能线性组合成之前的向量所能组成的所有数。就行了你们说是不是,sb iwtwiioi还扯了一大版自己都不懂的东西
【BZOJ】2115: [Wc2011] Xor的更多相关文章
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
- 【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)
bzoj2115,戳我戳我 Solution: 看得题解(逃,我太菜了,想不出这种做法 那么丢个链接 Attention: 板子别写错了 又写错了这次 \(long long\)是左移63位,多了会溢 ...
- BZOJ 2115: [Wc2011] Xor
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2794 Solved: 1184 [Submit][Stat ...
- bzoj 2115: [Wc2011] Xor xor高斯消元
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 797 Solved: 375[Submit][Status] ...
- BZOJ 2115: [Wc2011] Xor DFS + 线性基
2115: [Wc2011] Xor Time Limit: 10 Sec Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中 ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
随机推荐
- Linux获取当前用户信息函数
转自:http://net.pku.edu.cn/~yhf/linux_c/function/07.html endgrent(关闭组文件) 相关函数 getgrent,setgrent 表头文件 # ...
- Android 中this、getContext()、getApplicationContext()、getApplication()、getBaseContext() 之间的区别
: 知之为知之,不知为不知是知也! 使用this, 说明当前类是context的子类,一般是activity application等; this:代表当前,在Activity当中就是代表当前的Act ...
- Linux Shell 高级编程技巧3----运行级别脚本介绍
3.运行级别脚本介绍 3.1.运行级别 运行级别介绍: 0 关机 1 单用户模式 2 多用户模式 ...
- 【翻译七】java-同步
Synchronization Threads communicate primarily by sharing access to fields and the objects reference ...
- TensorFlow
转自:http://blog.csdn.net/stdcoutzyx/article/details/51645396 本片博文是参考文献[1]的阅读笔记,特此声明 TensorFlow,以下简称TF ...
- 1:A+B Problem
总时间限制: 1000ms 内存限制: 65536kB 描述 Calculate a + b 输入 Two integer a,,b (0 ≤ a,b ≤ 10) 输出 Output a + b ...
- AIX下禁止crs随ha启动而启动
/etc/init.crs enable /etc/init.crs disable 查看目前crs是enable还是disable状态 状态记录在一个文本文件里 /etc/oracle/scls_ ...
- java 访问 usb
java 要访问 usb 设备,通常要自己写c/c++代码,然后再用 java 访问这些组件,以达到控制usb设备的目的.但现在有一个开源组件 libusb 帮我们做好了访问usb设备的封装(包括wi ...
- SQLite密码添加移除
背景:电脑清理--个人洁癖 SQLite的最原始的是没有加密的,从而衍生了多种加密算法,但在平常使用中使用System.Data.Sqlite,但其加密后,一般都需要要单独的sqlite管理器--像我 ...
- javascript 简单加解密
//加密 function MyEncrypt(txt) { var sb = ""; var rand = 0; for (var i=0;i<txt.length;i++ ...