http://www.lydsy.com/JudgeOnline/problem.php?id=2115

题意:给出一个n个点m条边的无向连通边加权图,求1~n的某条路径使得异或值最大(可以重复点可以重复边)(n<=50000, m<=100000)

#include <bits/stdc++.h>
using namespace std;
const int N=50005, M=100015;
typedef long long ll;
struct E { int next, to; ll w; }e[M<<1];
int cnt, ihead[N], tot, n, m;
ll d[N], q[M*10], a[65];
void add(int u, int v, ll c) {
e[++cnt]=(E){ihead[u], v, c}; ihead[u]=cnt;
e[++cnt]=(E){ihead[v], u, c}; ihead[v]=cnt;
}
bool vis[N];
void dfs(int x) {
vis[x]=1;
for(int i=ihead[x]; i; i=e[i].next)
if(!vis[e[i].to]) d[e[i].to]=d[x]^e[i].w, dfs(e[i].to);
else q[++tot]=d[e[i].to]^d[x]^e[i].w;
}
int main() {
scanf("%d%d", &n, &m);
for(int i=0; i<m; ++i) { int x, y; ll w; scanf("%d%d%lld", &x, &y, &w); add(x, y, w); }
dfs(1);
for(int i=1; i<=tot; ++i)
for(int j=60; j>=0; --j) if((q[i]>>j)&1) {
if(!a[j]) { a[j]=q[i]; break; }
else q[i]^=a[j];
}
ll ans=d[n];
for(int j=60; j>=0; --j) if(!((ans>>j)&1)) ans^=a[j];
printf("%lld\n", ans);
return 0;
}

 

//PS:一下都是在本人什么都不懂的情况下乱写的,大家请有选择性的查看= =.....(体现了sb iwtwiioi是多么的弱(我就懒得删了..反正大概就是找出一组线性无关的元素,然后就能组成整个向量空间了= =然后就行了..

好题不解释..

首先去学习了一下线性基。这里说的线性基在这里具体是指某个向量数组在xor操作下形成的封闭集合中的线性无关量。我们求出这些基后就能很简单的贪心求出答案了。

然后再学习了一个特殊的性质= =在生成树上的非树边所形成的环在xor的情况下能表示出所有环的xor值(这个yy了好久证明不出,只能手工验证正确性..大概就是每一个非树边都存在有且一个所求出的环中,然后用一些环进行xor抵消掉一些树边然后就形成了新的环)

基的个数上界就是$O(log(n))$

然后我们只需要通过高斯消元求出每一位都独立的一个元素那么可以当成一个基,最后一定会出现一组基...大小为$O(log(n)), n为向量的大小$,也就是说,某个基的最高位存在而其它基都不存在这个位。

由于xor操作的封闭性,我们只需要像高斯消元一样消去某一位上其它元素的值即可。

回到本题...

由于一条1~n的路径可以由任意一条1~n的简单路径加上任意个环组成。(从简单路径中进入环的路径和出环的路径(同一条)xor抵消)

由之前所说,非树边的环可以线性组成所有环的xor值,所以我们直接搞就行了...

(ps:诶呀诶呀一定要强拉到基吗...最好理解的就是,我要贪心,所以我要变成一些数使得最高位只有一个数有其他数没有,而且这些数能线性组合成之前的向量所能组成的所有数。就行了你们说是不是,sb iwtwiioi还扯了一大版自己都不懂的东西

【BZOJ】2115: [Wc2011] Xor的更多相关文章

  1. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  2. 【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)

    bzoj2115,戳我戳我 Solution: 看得题解(逃,我太菜了,想不出这种做法 那么丢个链接 Attention: 板子别写错了 又写错了这次 \(long long\)是左移63位,多了会溢 ...

  3. BZOJ 2115: [Wc2011] Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2794  Solved: 1184 [Submit][Stat ...

  4. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

  5. BZOJ 2115: [Wc2011] Xor DFS + 线性基

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Description Input 第一行包含两个整数N和 M, 表示该无向图中 ...

  6. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  7. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  8. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  9. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

随机推荐

  1. Redis笔记(七)Java实现Redis消息队列

    这里我使用Redis的发布.订阅功能实现简单的消息队列,基本的命令有publish.subscribe等. 在Jedis中,有对应的java方法,但是只能发布字符串消息.为了传输对象,需要将对象进行序 ...

  2. 7z命令行工具

    7z (中文)是优秀开源的压缩解压缩软件(wiki: en  中文),有windows版本与linux版本,最新的9.32版本支持的格式包括: 压缩与解压缩均支持:7z, XZ, BZIP2, GZI ...

  3. 攻城狮在路上(壹) Hibernate(十七)--- Hibernate并发处理问题

    一.多个事务并发运行时的并发问题: 总结为第一类丢失更新.脏读.虚读.不可重复读.第二类丢失更新. 1.第一类丢失更新: 撤销一个事务时,把其他事务已提交的更新数据覆盖. 2.脏读: 一个事务读到另一 ...

  4. C++中引用(&)的用法和应用实例

    转自:http://www.cnblogs.com/Mr-xu/archive/2012/08/07/2626973.html 对于习惯使用C进行开发的朋友们,在看到c++中出现的&符号,可能 ...

  5. 接口JSon字符串格式

  6. ☆ ☆ VMware9虚拟机安装MAC OS X Mountain Lion 10.8.2详细图文教程 (转)

    参考  http://diybbs.zol.com.cn/1/34037_699.html 然后对安装的Mac系统进行升级到最新版本. 安装mac系统之后,再安装VMTOOLS darwin. 方法可 ...

  7. 虚拟机下玩DXF

    DXF检测虚拟机好象已经很长时间了,记得当时也是在网上找的教程,今天无聊又检测了一下,发现目前依然有效.用记事本打开 虚拟机启动文件 xxxx.vmx 在最后添加如下两行代码monitor_contr ...

  8. 《数据结构与算法分析》学习笔记(三)——链表ADT

    今天简单学习了下链表,待后续,会附上一些简单经典的题目的解析作为学习的巩固 首先要了解链表,链表其实就是由一个个结点构成的,然后每一个结点含有一个数据域和一个指针域,数据域用来存放数据,而指针域则用来 ...

  9. 【转】【技术博客】Spark性能优化指南——高级篇

    http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236e ...

  10. Laravel之Service Container服务容器

    managing class dependencies and performing dependency injection. Dependency injection is a fancy phr ...