LightOJ1283 Shelving Books(DP)
题目
Source
http://www.lightoj.com/volume_showproblem.php?problem=1283
Description
You are a librarian. You keep the books in a well organized form such that it becomes simpler for you to find a book and even they look better in the shelves.
One day you get n new books from one of the library sponsors. And unfortunately they are coming to visit the library, and of course they want to see their books in the shelves. So, you don't have enough time to shelve them all in the shelf in an organized manner since the heights of the books may not be same. But it's the question of your reputation, that's why you have planned to shelve them using the following idea:
1) You will take one book from the n books from left.
2) You have exactly one shelf to organize these books, so you may either put this book in the left side of the shelf, right side of the shelf or you may not put it in the shelf. There can already be books in the left or right side. In such case, you put the book with that book, but you don't move the book you put previously.
3) Your target is to put the books in the shelf such that from left to right they are sorted in non-descending order.
4) Your target is to put as many books in the shelf as you can.
You can assume that the shelf is wide enough to contain all the books. For example, you have 5 books and the heights of the books are 3 9 1 5 8 (from left). In the shelf you can put at most 4 books. You can shelve 3 5 8 9, because at first you got the book with height 3, you stored it in the left side of the shelf, then you got 9 and you put it in the right side of the shelf, then you got 1 and you ignored it, you got 5 you put it in the left with 3. Then you got 5 and you put it in left or right. You can also shelve 1 5 8 9 maintaining the restrictions.
Now given the heights of the books, your task is to find the maximum number of books you can shelve maintaining the above restrictions.
Input
Input starts with an integer T (≤ 200), denoting the number of test cases.
Each case starts with a line containing an integer n (1 ≤ n ≤ 100). Next line contains n space separated integers from [1, 105]. The ith integer denotes the height of the ith book from left.
Output
For each case, print the case number and the maximum number of books that can be shelved.
Sample Input
2
5
3 9 1 5 8
8
121 710 312 611 599 400 689 611
Sample Output
Case 1: 4
Case 2: 6
分析
题目大概说有n本书,要依次把它们放到书架,可以放到书架的左边或者右边挨着已经放好的书的下一个位置,当然也可以选择不放。放好后要保证书的高度从左到右非递减。问最多能放上几本书。
n才100,果断这么表示状态:
- dp[i][j][k]表示放置前i本书,书架的左边最后面的书是第j本且书架右边最前面的书是第k本,最多能放的书数
转移我用我为人人,通过dp[i-1]的状态选择将第i本书放到左边还是右边或者不放来转移并更新dp[i]的状态值。
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int d[111][111][111];
int main(){
int t,n,a[111];
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
scanf("%d",&n);
for(int i=1; i<=n; ++i){
scanf("%d",&a[i]);
}
memset(d,-1,sizeof(d));
d[0][0][0]=0;
for(int i=0; i<n; ++i){
for(int j=0; j<=i; ++j){
for(int k=0; k<=i; ++k){
if(d[i][j][k]==-1) continue;
d[i+1][j][k]=max(d[i+1][j][k],d[i][j][k]);
if(j==0 && k==0){
d[i+1][i+1][0]=1;
d[i+1][0][i+1]=1;
}else if(j==0){
if(a[k]>=a[i+1]) d[i+1][i+1][k]=max(d[i+1][i+1][k],d[i][j][k]+1);
if(a[k]>=a[i+1]) d[i+1][j][i+1]=max(d[i+1][j][i+1],d[i][j][k]+1);
}else if(k==0){
if(a[i+1]>=a[j]) d[i+1][i+1][k]=max(d[i+1][i+1][k],d[i][j][k]+1);
if(a[i+1]>=a[j]) d[i+1][j][i+1]=max(d[i+1][j][i+1],d[i][j][k]+1);
}else{
if(a[j]<=a[i+1] && a[i+1]<=a[k]){
d[i+1][i+1][k]=max(d[i+1][i+1][k],d[i][j][k]+1);
d[i+1][j][i+1]=max(d[i+1][j][i+1],d[i][j][k]+1);
}
}
}
}
}
int res=0;
for(int i=0; i<=n; ++i){
for(int j=0; j<=n; ++j){
res=max(res,d[n][i][j]);
}
}
printf("Case %d: %d\n",cse,res);
}
return 0;
}
LightOJ1283 Shelving Books(DP)的更多相关文章
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
- Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)
Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...
- 最长公共子序列长度(dp)
/// 求两个字符串的最大公共子序列长度,最长公共子序列则并不要求连续,但要求前后顺序(dp) #include <bits/stdc++.h> using namespace std; ...
随机推荐
- Sightseeing(poj 3463)
题意:给出n个点m条单向边,求最短路的道路条数和比最短路大1的道路条数的和. /* 用Dijkstra更新2*n次,来更新出所有点的最短路和次短路,顺便更新方案数. */ #include<cs ...
- Struts2拦截器之ExceptionMappingInterceptor(异常映射拦截器)
一.异常拦截器是什么? 异常拦截器的作用是提供一个机会,可以设置在action执行过程中发生异常的时候映射到一个结果字符串而不是直接中断. 将异常整合到业务逻辑中,比如在分层系统的调用中可以从底层抛出 ...
- linux退出vi
linux退出vi操作,可以先按“esc”,再按“:”,“x”即可,这是要保存退出. 假如是修改过的,不保存,即是:先按 : ,然后输入 q! 回车 假如未改动,即先按 : ,然后输入 ...
- JAVA基础学习之final关键字、遍历集合、日期类对象的使用、Math类对象的使用、Runtime类对象的使用、时间对象Date(两个日期相减)(5)
1.final关键字和.net中的const关键字一样,是常量的修饰符,但是final还可以修饰类.方法.写法规范:常量所有字母都大写,多个单词中间用 "_"连接. 2.遍历集合A ...
- [译]关于.NET Core1.1的通告
以下翻译可能会有不准确的地方, 想看原文的童鞋移步到Announcing .NET Core 1.1, 微软的开源真心喜欢, 希望有更多的童鞋关注微软, 关注.NET Core 我们很兴奋地宣布.NE ...
- C++中的虚函数(表)实现机制以及用C语言对其进行的模拟实现
tfref 前言 C++对象的内存布局 只有数据成员的对象 没有虚函数的对象 拥有仅一个虚函数的对象 拥有多个虚函数的对象 单继承且本身不存在虚函数的继承类的内存布局 本身不存在虚函数(不严谨)但存在 ...
- Codeforces Round #363 LRU(概率 状压DP)
状压DP: 先不考虑数量k, dp[i]表示状态为i的概率,状态转移方程为dp[i | (1 << j)] += dp[i],最后考虑k, 状态表示中1的数量为k的表示可行解. #incl ...
- PS 零基础训练1
背景色:Alt + Del 前景色:Ctrl + Del 快捷键: 更换工具栏里的第二项:Shift + W or Shift + C ... 缩放:Ctrl + = or Ctrl + - 工具笔 ...
- phpcms v9最常用的22个调用代码
新源网络工作室友情总结phpcms v9最常用的22个调用代码: 调用最新文章,带所在版块{pc:get sql="SELECT a.title, a.catid, b.catid, b.c ...
- Mesa 3D
Mesa 3D是一个在MIT许可证下开放源代码的三维计算机图形库,以开源形式实现了OpenGL的应用程序接口. OpenGL的高效实现一般依赖于显示设备厂商提供的硬件,而Mesa 3D是一个纯基于软件 ...