在第一部分中, 你学到了并发,线程以及GCD的工作原理。通过使用dispatch_barrrier和dispatch_sync,你做到了让 PhotoManager单例在读写照片时是线程安全的。除此之外,你用到dispatch_after来提示用户,优化了用户体验。还有,使用 dispatch_async异步执行CPU密集型任务,从而为视图控制器初始化过程减负。

如果你跟着教程做,现在可以从第一部分的示例工程继续。如果你没有完成第一部分或不想再用你的工程,可以下载第一部分的完成文件

是时候进一步探索GCD了!

纠正过早出现的弹窗

你可能注意到,当你通过 Le Internet 选项添加照片时,会有提示框在图片下载完成之前就弹出,如下图:

错误在于 PhotoManager 里的 downloadPhotosWithCompletion:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
func downloadPhotosWithCompletion(completion: BatchPhotoDownloadingCompletionClosure?) {
  var storedError: NSError!
  for address in [OverlyAttachedGirlfriendURLString,
                  SuccessKidURLString,
                  LotsOfFacesURLString] {
    let url = NSURL(string: address)
    let photo = DownloadPhoto(url: url!) {
      image, error in
      if error != nil {
        storedError = error
      }
    }
    PhotoManager.sharedManager.addPhoto(photo)
  }
  
  if let completion = completion {
    completion(error: storedError)
  }
}

这里在方法的最后调用completion闭包——你会想当然的认为所有图片都下载完了。但不幸的是,在此时无法保证。

DownloadPhoto类的实例方法从一个URL下载图片并且不等下载完成就立即退出。换言之,downloadPhotosWithCompletion在最后调用completion闭包,就好像其中的所有方法都在顺序执行,并且在每个方法完成后才执行下一个。

然而,DownloadPhoto(url:)是异步并且立即返回的——所以目前的方式不能正常工作。

downloadPhotosWithCompletion应该在所有图片下载任务都完成后再调用自己的completion闭包。问题是:你怎么监视并发的异步事件呢?你不知道它们何时完成,以何种顺序。

也许你可以用多个Bool值来追踪下载情况,但那不容易扩展。而且坦白讲,那是很丑陋的代码。

幸运的是,dispatch groups就是专为监视多个异步任务的完成情况而设计的。

调度组(Dispatch Groups)

调度组在一组任务都完成后会发出通知。这些任务可以是异步或同步的,甚至可以分布在不同的队列。调度组还可以通过同步或异步的方式来通知。因为任务在不同的队列中,disptch_group_t实例用来追踪队列中的不同任务。

在组内所有事件都完成时,GCD API提供了两种方式发送通知。

第一种是dispatch_group_wait,它会阻塞当前进程,直到所有任务都完成或是等待超时。这正是我们的例子中需要的方式。

打开 PhotoManager.swift ,替换downloadPhotosWithCompletion:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
func downloadPhotosWithCompletion(completion: BatchPhotoDownloadingCompletionClosure?) {
  dispatch_async(GlobalUserInitiatedQueue) { // 1
    var storedError: NSError!
    var downloadGroup = dispatch_group_create() // 2
  
    for address in [OverlyAttachedGirlfriendURLString,
                    SuccessKidURLString,
                    LotsOfFacesURLString]
    {
      let url = NSURL(string: address)
      dispatch_group_enter(downloadGroup) // 3
      let photo = DownloadPhoto(url: url!) {
        image, error in
        if let error = error {
          storedError = error
        }
        dispatch_group_leave(downloadGroup) // 4
      }
      PhotoManager.sharedManager.addPhoto(photo)
    }
  
    dispatch_group_wait(downloadGroup, DISPATCH_TIME_FOREVER) // 5
    dispatch_async(GlobalMainQueue) { // 6
      if let completion = completion { // 7
        completion(error: storedError)
      }
    }
  }
}

逐一来看注释:

  • 因为使用dispatch_group_wait阻塞了当前进程,要用dispatch_async将整个方法放到后台队列,才能保证主线程不被阻塞。

  • 创建一个调度组,作用好比未完成任务的计数器。

  • dispatch_group_enter通知调度组一个任务已经开始。你必须保证dispatch_group_enter和dispatch_group_leave是成对调用的,否则程序会崩溃。

  • 通知任务已经完成。再一次,这里保持进和出相匹配。

  • dispatch_group_wait 等待所有任务都完成直到超时。如果在任务完成前就超时了,函数会返回一个非零值。可以通过返回值来判断是否等待超时;不过,这里你用 DISPATCH_TIME_FOREVER来表示一直等待。这意味着,它会永远等待!没关系,因为图片总是会下载完的。

  • 此时,你可以保证所有图片任务都完成或是超时了。接下来在主队列中加入完成闭包。闭包晚些时候会在主线程中执行。

  • 执行闭包。

运行app,下载几张图片,留意你的app是如何表现的。

Note:如果网速太快以至于分辨不出何时执行的闭包,你可以修改设备的设置。在 Setting 中的Developer Section 。打开 Network Link Conditioner,选择“Very Bad Network”。

如果在模拟器上,用工具变更网速。这是你武器库中一个很好的工具,它让你清楚在不佳的网络下你的app会发生什么。

这个方案目前不错,但最好能避免阻塞进程。你下一步的工作是重写这个方法来异步通知下载完成。

在学习下一个调度组的用法前,先看看怎样在不同的队列类型下使用调度组。

  • 自定义顺序队列:好选择。当一组任务完成时用它发送通知。

  • 主队列(顺序):在当前情景下是不错的选择。但你要谨慎地在主队列中使用,因为同步等待所有任务会阻塞主线程。然而,当一个需要较长时间的任务(比如网络请求)完成时,异步更新UI是很好的选择。

  • 并发队列:好选择。用于调度组和通知。

调度组,再来一次

做的不错,但是异步调度到另一个队列然后用 dispatch_group_wait 阻塞还是有一些笨拙。还有另一种方式…

在 PhotoManager.swift 中找到downloadPhotosWithCompletion并替换之:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
func downloadPhotosWithCompletion(completion: BatchPhotoDownloadingCompletionClosure?) {
  // 1
  var storedError: NSError!
  var downloadGroup = dispatch_group_create()
  
  for address in [OverlyAttachedGirlfriendURLString,
                  SuccessKidURLString,
                  LotsOfFacesURLString]
  {
    let url = NSURL(string: address)
    dispatch_group_enter(downloadGroup)
    let photo = DownloadPhoto(url: url!) {
      image, error in
      if let error = error {
        storedError = error
      }
      dispatch_group_leave(downloadGroup)
    }
    PhotoManager.sharedManager.addPhoto(photo)
  }
  
  dispatch_group_notify(downloadGroup, GlobalMainQueue) { // 2
    if let completion = completion {
      completion(error: storedError)
    }
  }
}

异步方法是如何工作的:

  • 新的实现不需要把方法放进dispatch_async中,因为你并没有阻塞主线程。

  • dispatch_group_notify异步执行闭包。当调度组内没有剩余任务的时候闭包才执行。同样要指明在哪个队列中执行闭包。当下,你需要在主队列中执行闭包。

这是更优雅的方法,并且不会阻塞任何进程。

并发过多带来的危险

通过支配这些新工具,你应该将每件事都线程化,对吗?

看看PhotoManager中的downloadPhotosWithCompletion。你会发现通过for循环下载了三张图片。现在来看看能否通过并发执行for循环来提速。

是时候请出dispatch_apply了。

dispatch_apply像for循环一样,只不过它会并发地执行循环过程。这个函数是同步的,所以像普通的for循环一样,dispatch_apply在所有工作都完成后才返回。

要注意循环的最佳次数,如果有太多循环但每个循环内只有很小的工作量,那么额外的开销会抹杀掉并发带来的好处。 步进 (striding)可以帮助到你。它让你在每次循环中做多件工作。

什么时候用dispatch_apply合适?

  • 自定义顺序队列:在顺序队列中使用dispatch_apply完全无意义;它的效果和for循环一样。

  • 主队列(顺序):理由同上,用for循环就可以了。

  • 并发队列:明智之选,尤其是你需要追踪任务进度时。

替换downloadPhotosWithCompletion如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
func downloadPhotosWithCompletion(completion: BatchPhotoDownloadingCompletionClosure?) {
  var storedError: NSError!
  var downloadGroup = dispatch_group_create()
  let addresses = [OverlyAttachedGirlfriendURLString,
                   SuccessKidURLString,
                   LotsOfFacesURLString]
  
  dispatch_apply(UInt(addresses.count), GlobalUserInitiatedQueue) {
    in
    let index = Int(i)
    let address = addresses[index]
    let url = NSURL(string: address)
    dispatch_group_enter(downloadGroup)
    let photo = DownloadPhoto(url: url!) {
      image, error in
      if let error = error {
        storedError = error
      }
      dispatch_group_leave(downloadGroup)
    }
    PhotoManager.sharedManager.addPhoto(photo)
  }
  
  dispatch_group_notify(downloadGroup, GlobalMainQueue) {
    if let completion = completion {
      completion(error: storedError)
    }
  }
}

现在你的循环可以并发执行了;调用 dispatch_apply 时,第一个参数是循环的次数,第二个参数是执行任务的队列,第三个参数是闭包。

尽管你的代码在添加图片时是线程安全的,但是图片的顺序取决于线程完成的顺序。

运行app,用 Le Internet 添加一些图片,发现不同了吗?

在真机上运行新的代码会发现 些许 的速度提升。但是这值得吗?

实际上,在这里并不值得这么做。原因如下:

  • 你很可能因为并行而花费了比for循环更多的开销。你应该结合合适的步长对 非常大 的集合使用dispatch_apply。

  • 开发app的时间有限——不要花时间过早优化。如果你想优化,那么就优化那些值得优化的东西。用Instruments测试app以找到最耗时间的方法。如何使用Instruments。

  • 一般说来,代码优化会让你的代码变得更复杂。你要确定带来的好处值得你增加复杂性。

记住,不要痴迷于优化。否则只会让你自己为难,也让看你代码的人抓狂。

取消调度块

iOS 8 和 OS X Yosemite引入了 调度对象块 (dispatch block object)。它们实现起来就像对闭包再包装一层。调度对象块可以做到很多事情,比如为队列中的对象设置QoS等级来决定优先级,但最显著的能力是可以 取消块的执行。要明白对象块只有在轮到它执行之前才可以取消(一旦开始执行就不能取消了)。

为了说明这个问题,首先用 Le Internet 下载一些图片,然后取消它们。替换 PhotoManager.swift 中的downloadPhotosWithCompletion:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
func downloadPhotosWithCompletion(completion: BatchPhotoDownloadingCompletionClosure?) {
  var storedError: NSError!
  let downloadGroup = dispatch_group_create()
  var addresses = [OverlyAttachedGirlfriendURLString,
                   SuccessKidURLString,
                   LotsOfFacesURLString]
  addresses += addresses + addresses // 1
  var blocks: [dispatch_block_t] = [] // 2
  
  for in 0 ..< addresses.count {
    dispatch_group_enter(downloadGroup)
    let block = dispatch_block_create(DISPATCH_BLOCK_INHERIT_QOS_CLASS) { // 3
      let index = Int(i)
      let address = addresses[index]
      let url = NSURL(string: address)
      let photo = DownloadPhoto(url: url!) {
        image, error in
        if let error = error {
          storedError = error
        }
        dispatch_group_leave(downloadGroup)
      }
      PhotoManager.sharedManager.addPhoto(photo)
    }
    blocks.append(block)
    dispatch_async(GlobalMainQueue, block) // 4
  }
  
  for block in blocks[3 ..< blocks.count] { // 5
    let cancel = arc4random_uniform(2) // 6
    if cancel == 1 {
      dispatch_block_cancel(block) // 7
      dispatch_group_leave(downloadGroup) // 8
    }
  }
  
  dispatch_group_notify(downloadGroup, GlobalMainQueue) {
    if let completion = completion {
      completion(error: storedError)
    }
  }
}
  • 扩展addresses数组,将每个地址复制3份。

  • 这个数组用来保存接下来创建的对象块。

  • dispatch_block_create创建一个对象块。第一个参数是一个表明了块特征的标志。此处的标志让块从它进入的队列那里继承QoS等级。第二个参数是闭包形式的块定义。

  • 块被异步的调度到全局主队列。这里用全局主队列是因为它是一个顺序队列,可以方便我们取消对象块。当前代码已经在主线程中执行着,所以你可以保证下载任务将在此之后才执行(也就是这个downloadPhotosWithCompletion返回后才轮到下载任务执行)。

  • 取数组中第三个到结尾的部分。

  • arc4random_uniform会随机返回一个0到上界之间(不含上界)的整数。以2为上界会得到0或1,像投硬币一样。

  • 如果随机数是1,则取消块。前提是,块还在队列中并且没开始。块在执行的过程中是不可以取消的。

  • 因为所有块都加入调度组了,不要忘记移除被取消的那些块。

运行,从 Le Internet 添加图片。你会看到app下载3张图片,以及随机数量的额外图片。那些没下载的图片是因为在加入队列 后 被取消了。这是一个刻意设计的例子,但是很好的演示了怎样使用调度对象块以及如何取消它。

调度对象块能做更多事情,别忘了查看文档。

五花八门的GCD趣用

等等!还有更多!下面展示一些常规用途之外的功能。尽管你不会经常使用这些工具,但他们可能在特定情况下非常有用。

测试异步代码

这听起来很疯狂,但是你知道Xcode拥有测试功能吗?:]我知道,有时我喜欢假装它不存在,但是编写和运行测试对构建复杂的代码很重要。

Xcode中的测试运行在XCTestCase的子类之下,它会运行所有以test开头的方法。测试跑在主线程下,所以你可以认为测试是顺序执行的。

一旦给定的测试方法返回了,XCTest 会认为这个测试完成了而去做下一个测试。这就是说,在下一个测试执行过程中,前一个测试中的异步代码也在继续执行。

网路请求通常是异步的,因为你不想阻塞主线程。一旦测试方法返回,测试也就结束了,因此很难对网络请求做测试。

我们简单看一下两种普遍的测试异步代码的方法:信号量(semaphores)和 期望(expectations)。

信号量

信号量是一个古老学院派的线程概念,它是由谦逊的Edsger W. Dijkstra提出的。信号量是很复杂的话题,因为它建立在错综复杂的操作系统函数之上。

如果你想了解更多信号量的知识,查阅细说信号量原理。如果你是学院派,有一个用到了信号量的经典软件开发问题叫做哲学家进餐问题

信号量让你控制多个消费者对有限资源的获取。例如,如果你创建一个信号量来控制拥有2个资源的资源池,那么同一时刻最多有两个线程可以进入临界区。其它也想使用资源的线程必须在FIFO队列中等待。

打开 GooglyPuffTests.swift 并替换掉 downloadImageURLWithString:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
func downloadImageURLWithString(urlString: String) {
  let url = NSURL(string: urlString)
  let semaphore = dispatch_semaphore_create(0) // 1
  let photo = DownloadPhoto(url: url!) {
    image, error in
    if let error = error {
      XCTFail("\(urlString) failed. \(error.localizedDescription)")
    }
    dispatch_semaphore_signal(semaphore) // 2
  }
  
  let timeout = dispatch_time(DISPATCH_TIME_NOW, DefaultTimeoutLengthInNanoSeconds)
  if dispatch_semaphore_wait(semaphore, timeout) != 0 { // 3
    XCTFail("\(urlString) timed out")
  }
}

以上代码中信号量的工作原理:
1. 创建信号量。参数表明信号量起始值。这个值代表了起始阶段可以获取信号量的线程数目(增加信号量就是发信号,用0做初始值代表当前没有线程可以获取信号 量)。 2. 在完成闭包中,你告诉信号量不再需要资源。这会使信号量增加,同时给其他等待资源的任务发信号,通知当前信号量可用。
3. 等待信号量并设置超时时间。这个调用会阻塞当前进程直到收到信号。非0返回表示等待已超时。在这种情况下,测试失败,因为网络请求不应该超过10秒——相当合理的假设!
(译者注:说 下我的理解:首先创建了信号量,但此时因为信号量是0,没有线程可以获取它,注释3中对信号量的等待会阻塞。只有在图片下载好了以后,才会发送一个信号 量,那么注释3对信号量的获取就成功了,并退出等待。但如果图片下载失败呢?就不会调用注释2这句触发信号的语句,那么注释3就会等待超时,从而测试失 败。)

Product/Test 或 cmd+U 运行测试。测试应该成功。

断掉网络连接并再次测试;如果在真机测试,请开启飞行模式。如果在模拟器上,直接断网就好了。测试在10秒后会返回失败的结果。很好,起作用了!

这是相当微不足道的测试,但是如果你和服务端团队一起工作,这些基础测试可以避免一些涉及网络问题的无端指责。

期望(expectations)

XCTest框架提供了另一种使用 期望 来测试异步代码的方法。这种特性让你首先设置你的期望——你希望发生的事——然后再开始异步任务。接下来测试会一直等待,直到异步任务将期望标记为 已完成 。

替换 GooglyPuffTests.swift 中的downloadImageURLWithString:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
func downloadImageURLWithString(urlString: String) {
  let url = NSURL(string: urlString)
  let downloadExpectation = expectationWithDescription("Image downloaded from \(urlString)"// 1
  let photo = DownloadPhoto(url: url!) {
    image, error in
    if let error = error {
      XCTFail("\(urlString) failed. \(error.localizedDescription)")
    }
    downloadExpectation.fulfill() // 2
  }
  
  waitForExpectationsWithTimeout(10) { // 3
    error in
    if let error = error {
      XCTFail(error.localizedDescription)
    }
  }
}

工作原理:
1. 用expectationWithDescription生成期望。测试会在日志上显示其中的字符串参数,所以请描述你期望发生的事。
2. 在异步执行的闭包中调用fulfill来标记期望已达成。
3. 调用线程用waitForExpectationsWithTimeout等待期望达成。如果等待超时会视为出错。

运行测试。结果和使用信号量没什么不同,但使用XCTest框架是更清晰易读的方案。

调度源(Dispatch Sources)

GCD 中存在一个特别有趣的特性叫调度源,它是一个包含底层功能的百宝囊,帮助你响应或监控Unix信号,文件描述符(file descriptors),Mach端口,VFS Nodes,以及其他复杂的东西。所有这些都超出了本教程的范围,但是你可以尝试着使用一下调度源对象。

第一次使用调度源的用户可能会迷失其中,所以你首先要理解dispatch_source_create的工作原理。下面是创建它的函数原型:

1
2
3
4
5
func dispatch_source_create(
  type: dispatch_source_type_t,
  handle: UInt,
  mask: UInt,
  queue: dispatch_queue_t!) -> dispatch_source_t!

第一个参数type: dispatch_source_type_t是最重要的参数,因为它描述了句柄(handle)和掩码(mask)参数。你需要查看Xcode文档来弄清楚dispatch_source_type_t的参数有哪些可选项。

这里你会监视DISPATCH_SOURCE_TYPE_SIGNAL。如文档所述:

调度源监控当前进程的信号。句柄(handle)是信号数字(int)。掩码(mask)没用到(传0)。

Unix信号列表可以从signal.h找到。在顶部有一串#define。在这些信号列表中,你将要监控SIGSTOP信号。这个信号会在进程接收到不可抗拒的挂起指令时被发送。这个信号与你用LLDB debugger调试程序时发送的信号相同。

进 入 PhotoCollectionViewController.swift ,在viewDidLoad附近添加下面的代码。你需要为类添加两个私有属性,并在viewDidLoad的开始处添加段代码,在调用 superclass和ALAssetLibrary之间:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
#if DEBUG
private var signalSource: dispatch_source_t!
private var signalOnceToken = dispatch_once_t()
#endif
  
override func viewDidLoad() {
  super.viewDidLoad()
  
  #if DEBUG // 1
  dispatch_once(&signalOnceToken) { // 2
    let queue = dispatch_get_main_queue()
    self.signalSource = dispatch_source_create(DISPATCH_SOURCE_TYPE_SIGNAL,
                                               UInt(SIGSTOP), 0, queue) // 3
    if let source = self.signalSource { // 4
      dispatch_source_set_event_handler(source) { // 5
        NSLog("Hi, I am: \(self.description)")
      }
      dispatch_resume(source) // 6
    }
  }
  #endif
  
  // The other stuff
}

这段代码有点难懂,因此逐个注释来讲解:
1. 最好只在DEBUG模式下编译这段代码,因为这可能让不怀好意者洞见很多信息。:] 在 Project Settings –> Build Settings –> Swift Compiler – Custom Flags –> Other Swift Flags –> Debug 下添加 -D DEBUG 。
2. 用dispatch_once一次性初始化调度源。
3. 初始化signalSource变量。你指明对信号感兴趣并且提供SIGSTOP做第二个参数。除此之外,你用主队列处理接收到的事件——稍后你会发现为什么。
4. 如果参数错误,调度源对象不会被创建。因此,你应该在使用它之前确保调度源是有效的。
5. dispatch_source_set_event_handler注册了一个事件处理闭包,当你接收到监控的信号时会调用这个闭包。
6. 默认情况下,所有调度源在开始都处于挂起状态。当你想监视事件时,必须让源对象继续执行。

运行app;暂停调试器然后立即恢复。检查控制台(console),你会看到类似下面的信息:

1 2014-08-12 12:24:00.514 GooglyPuff[24985:5481978] Hi, I am:

你的app现在可以感知到调试(debugging-aware)了!这真棒,但在现实中怎样用它呢?

你可以用它调试一个对象并在恢复app时展示数据;你也可以自定义一些安全逻辑来保护app,当恶意攻击者在你的程序上附着调试器的时候。

有趣的想法是把这个方法当做堆栈追踪工具,来找到你想要在调试器中修改的对象。

设想一下这样的场景。当你意外地停掉调试器时,你很难处在期望的栈帧上。而现在你可以在任意时刻停止调试器并让代码执行到你期望的位置。这很有用,当你想执行一段从调试器很难达到的代码。试一试!

在 viewDidLoad中的NSLog语句处设置断点。暂停调试器,然后再开始;app会命中你刚刚设置的断点。现在你已经深入到 PhotoCollectionViewController方法中了。现在你可以随心所欲地使用 PhotoCollectionViewController实例了。多么便捷!

注意:如果在调试器中你不知道哪个线程是哪个,来看一下。主线程总是第一个,libdispatch,GCD的协调器是第二个。剩下的线程要看硬件当时在做什么样的工作。

在调试器中,输入:

1 po self.navigationItem.prompt = "WOOT!"

然后继续执行app。你会看到如下所示:

通过这个方法,你可以更新UI,探查类的属性,甚至执行方法——无需重启app来进入特定的工作流状态。很巧妙。

下一步?

下载最终的工程

我不想重提,但是你真的应该看一下怎样使用Instruments。如果你想优化app,绝对需要这个。Instruments可以概述程序中哪些代码相对其它代码执行更久。如果你想知道代码实际的执行时间,很可能需要一些自制的解决方案。

同时学习如何在Swift中使用NSOperations和NSOperationQueue,一种基于GCD的并发技术。实际上,这是使用GCD的最佳实践。NSOperations提供更好的控制,处理最多的并发操作,在牺牲一定速度的情况下更加面向对象。

记住,除非你有特别的理由深入底层,你应该始终尝试并坚持使用更高层的API。只在你想学习更多或做一些非常非常“有趣”的事时才进入到Apple的“暗黑艺术”(dark art)中探险。:]

祝你好运,尽情欢乐!

在Swift中应用Grand Central Dispatch(下)的更多相关文章

  1. 在Swift中应用Grand Central Dispatch(上)转载自的goldenfiredo001的博客

    尽管Grand Central Dispatch(GCD)已经存在一段时间了,但并非每个人都知道怎么使用它.这是情有可原的,因为并发很棘手,而且GCD本身基于C的API在 Swift世界中很刺眼. 在 ...

  2. 转 Grand Central Dispatch 基础教程:Part 1/2 -swift

    本文转载,原文地址:http://www.cocoachina.com/ios/20150609/12072.html 原文 Grand Central Dispatch Tutorail for S ...

  3. iOS 中NSOperationQueue,Grand Central Dispatch , Thread的上下关系和区别

    In OS X v10.6 and later, operation queues use the libdispatch library (also known as Grand Central D ...

  4. NSThread 子线程 Cocoa NSOperation GCD(Grand Central Dispatch) 多线程

    单词:thread 英 θred:n 线.思路.vt 穿过.vi 穿透过 一.    进程.线程 进程:正在进行中的程序被称为进程,负责程序运行的内存分配,每一个进程都有自己独立的虚拟内存空间 线程: ...

  5. Grand Central Dispatch (GCD)

    Grand Central Dispatch (GCD) Reference Grand Central Dispatch (GCD) comprises language features, run ...

  6. IOS学习之十七:Grand Central Dispatch(GCD)编程基础

    IOS学习之十七:Grand Central Dispatch(GCD)编程基础   有过编程经验的人,基本都会接触到多线程这块. 在java中以及Android开发中,大量的后台运行,异步消息队列, ...

  7. GCD (Grand Central Dispatch) 笔记

    GCD (Grand Central Dispatch) 是Apple公司开发的一种技术,它旨在优化多核环境中的并发操作并取代传统多线程的编程模式. 在Mac OS X 10.6和IOS 4.0之后开 ...

  8. IOS 多线程编程之Grand Central Dispatch(GCD)介绍和使用 多线程基础和练习

    介绍:前面内容源自网络 Grand Central Dispatch 简称(GCD)是苹果公司开发的技术,以优化的应用程序支持多核心处理器和其他的对称多处理系统的系统.这建立在任务并行执行的线程池模式 ...

  9. iOS开发之四张图说明GCD(Grand Central Dispatch)附Test源码

    首先,先介绍几个概念:GCD,队列,串行,并行,同步,异步.                                                                       ...

随机推荐

  1. Java正则速成秘籍(二)之心法篇

    导读 正则表达式是什么?有什么用? 正则表达式(Regular Expression)是一种文本规则,可以用来校验.查找.替换与规则匹配的文本. 又爱又恨的正则 正则表达式是一个强大的文本匹配工具,但 ...

  2. Codeforces558E A Simple Task(线段树)

    题目 Source http://codeforces.com/problemset/problem/558/E Description This task is very simple. Given ...

  3. Modules

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/20 ...

  4. 警告: [SetContextPropertiesRule]{Context} Setting property &#39;source&#39; to &#39;org.eclipse.jst.jee.server:CurrencyClientServe

    有的说: 在Servers视图里双击创建的server,然后在其server的配置界面中选中"Publish module contexts to separate XML files&qu ...

  5. DWR应用—快速入门篇

    DWR(Direct Web Remoting)是一个Ajax的开源框架,用于改善web页面与Java类交互的远程服务器端的交互体验. 官网:http://directwebremoting.org/ ...

  6. 转:SSE:服务器发送事件

    原文来自于:http://javascript.ruanyifeng.com/htmlapi/eventsource.html 目录 概述 客户端代码 概述 建立连接 open事件 message事件 ...

  7. 找不到类型“IBatisService.boxManageService”,它在 ServiceHost 指令中提供为 Service 特性值,或在配置元素 system.serviceModel/serviceHostingEnvironment/serviceActivations 中提供。

    找不到类型“IBatisService.boxManageService”,它在 ServiceHost 指令中提供为 Service 特性值,或在配置元素 system.serviceModel/s ...

  8. Webfrom 生成流水号 组合查询 Repeater中单选与复选控件的使用 JS实战应用

                                             Default.aspx 网页界面 <%@ Page Language="C#" AutoE ...

  9. JavaScript js生成GUID

    function generateUUID(){ var d = new Date().getTime(); var uuid = 'xxxxxxxx-xxxx-4xxx-yxxx-xxxxxxxxx ...

  10. css3 UI 修饰——回顾

    1.box-shadow 属性向框添加一个或者多个阴影. 语法: box-shadow: h-shadow v-shadow blur spread color inset h-shadow 必须,水 ...