通过欧拉计划学Rust编程(第500题)
由于研究Libra等数字货币编程技术的需要,学习了一段时间的Rust编程,一不小心刷题上瘾。
“欧拉计划”的网址: https://projecteuler.net
英文如果不过关,可以到中文翻译的网站: http://pe-cn.github.io/
这个网站提供了几百道由易到难的数学问题,你可以用任何办法去解决它,当然主要还得靠编程,编程语言不限,论坛里已经有Java、C#、Python、Lisp、Haskell等各种解法,当然如果你直接用google搜索答案就没任何乐趣了。
这次解答的是第500题:
https://projecteuler.net/problem=500
题目描述:
120的因子个数为16,事实上120是最小的有16个因子的数。
找出最小的有2^500500个因子的数,给出这个数除以500500507的余数。
〓
〓
〓
〓
请
先
不
要
直
接
看
答
案
,
最
好
自
己
先
尝
试
一
下
。
解题过程:
直接看最终的问题,2^500500是个天文数字,肯定不能用蛮力。遇到一个复杂的问题,可以先尝试解决简单的情况,然后慢慢逼近最终的问题。
第一步: 从简单的情况入手找规律:
第650题里解决过因子个数的公式,还可以计算出所有因子之和。
fn min_number_has_factors(x: u64) -> u64 {
for n in 2.. {
let groups = factors_group(n);
let factors_num = groups.iter().map(|(_, x)| x + 1).product::<u64>();
if factors_num == x {
println!("{}, divisors num: {}", n, factors_num);
print_factors_group(groups);
return n;
}
}
0
}
// 如果一个数有这些因子:[2, 2, 3, 3, 3, 3, 5, 7]
// 则得到:[(2,2), (3,4), (5,1), (7,1)]
fn factors_group(n: u64) -> Vec<(u64, u64)> {
let factors = primes::factors(n);
let groups = factors
.iter()
.group_by(|e| **e)
.into_iter()
.map(|(k, group)| (k, group.count() as u64))
.collect::<Vec<(u64, u64)>>();
groups
}
fn print_factors_group(groups: Vec<(u64, u64)>) {
println!(
"{}",
&groups
.iter()
.map(|(k, v)| k.to_string() + &"^" + &v.to_string())
.join(" * ")
);
println!(
"divisors num: {}",
&groups
.iter()
.map(|(_, v)| "(".to_string() + &v.to_string() + &"+1)")
.join(" * ")
);
}
现在先尝试计算几个,慢慢寻找规律。
min_number_has_factors(4); // 2^2
min_number_has_factors(8); // 2^3
min_number_has_factors(16); // 2^4
min_number_has_factors(32); // 2^5
min_number_has_factors(64); // 2^6
min_number_has_factors(128); // 2^7
min_number_has_factors(256); // 2^8
结果有:
6 = 2^1 * 3^1
因子个数 4= (1+1) * (1+1)
24 = 2^3 * 3^1
因子个数 8 = (3+1) * (1+1)
120 = 2^3 * 3^1 * 5^1
因子个数 16 = (3+1) * (1+1) * (1+1)
840 = 2^3 * 3^1 * 5^1 * 7^1
因子个数 32 = (3+1) * (1+1) * (1+1) * (1+1)
7560 = 2^3 * 3^3 * 5^1 * 7^1
因子个数 64 = (3+1) * (3+1) * (1+1) * (1+1)
83160 = 2^3 * 3^3 * 5^1 * 7^1 * 11^1
因子个数 128 = (3+1) * (3+1) * (1+1) * (1+1) * (1+1)
1081080 = 2^3 * 3^3 * 5^1 * 7^1 * 11^1 * 13^1
因子个数 256 = (3+1) * (3+1) * (1+1) * (1+1) * (1+1) * (1+1)
第二步: 努力寻找规律
通过分析几个简单的特例,将一般性的公式推导出来,需要运用基础的数学知识。
一个数n可以分解成如下形式,其中pi为素数因子。
那么,它的因子个数为:
最终的因子个数可以表示为2 ^ 500500形式,令:
则有:
最终的结果要让[b0, b1, b2...bi]的和为500500。现在来看一下这个数组是如何变化的,找出递推的规律。
因子个数 2 = (2^1)
[b0] = [1]
因子个数 4 = (2^1) * (2^1)
[b0,b1] = [1,1]
因子个数 8 = (2^2) * (2^1)
[b0,b1] = [2,1]
因子个数 16 = (2^2) * (2^1) * (2^1)
[b0,b1,b2] = [2,1,1]
因子个数 32 = (2^2) * (2^1) * (2^1) * (2^1)
[b0,b1,b2] = [2,2,1]
因子个数 64 = (2^2) * (2^2) * (2^1) * (2^1)
[b0,b1,b2,b3] = [2,2,1,1]
因子个数 128 = (2^2) * (2^2) * (2^1) * (2^1) * (2^1)
[b0,b1,b2,b3,b4] = [2,2,1,1,1]
因子个数 256 = (2^2) * (2^2) * (2^1) * (2^1) * (2^1) * (2^1)
[b0,b1,b2,b3,b4,b5] = [2,2,1,1,1,1]
这里需要足够的耐心,这个bi数组或者在末尾增加一个元素1,或者在前面的某个位置上数值增1。
如果其中的某一项增1,则数值增加:
如果尾部增加一项,数值增加:
上面的数值中,哪一项更小,则表示或者在尾部增加一个,或者原数组中的数值增1。
最后的代码:
fn p500(n: usize) -> u64 {
let mut pset = PrimeSet::new();
let primes: Vec<_> = pset.iter().take(n).collect();
let primes_log: Vec<_> = primes.iter().map(|x| (*x as f64).log10()).collect();
let mut b = vec![1];
for _i in 2..=n {
let mut min = primes_log[b.len()];
let mut pos = b.len(); // 默认尾部增加一个
for j in 0..b.len() {
let temp = 2_f64.powf(b[j] as f64) * primes_log[j];
if temp < min {
pos = j;
min = temp;
}
if b[j] == 1 {
break; // 后面的都不用判断了
}
}
if pos == b.len() {
b.push(1);
} else {
b[pos] += 1;
}
}
let mut result = 1_u64;
for i in 0..b.len() {
let exp = 2_u32.pow(b[i]) - 1;
for _j in 0..exp {
result = result * primes[i] % 500500507;
}
}
result
}
--- END ---
我把解决这些问题的过程记录了下来,写成了一本《用欧拉计划学 Rust 编程》PDF电子书,请随意下载。
链接:https://pan.baidu.com/s/1NRfTwAcUFH-QS8jMwo6pqw
提取码:qfha
由于欧拉计划不让发布100题之外的解题步骤,否则封号,所以最新PDF不再公开,请加我微信(SLOFSLB)索要最新的PDF电子书。
通过欧拉计划学Rust编程(第500题)的更多相关文章
- 通过欧拉计划学Rust编程(第54题)
由于研究Libra等数字货币编程技术的需要,学习了一段时间的Rust编程,一不小心刷题上瘾. 刷完欧拉计划中的63道基础题,能学会Rust编程吗? "欧拉计划"的网址: https ...
- 用欧拉计划学Rust编程(第26题)
最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,所以先补一下Rust的基础知识.学习了一段时间,发现Rust的学习曲线非常陡峭,不过仍有快速入门的办法. 学习任何一项技能最怕没有 ...
- 通过欧拉计划学习Rust编程(第22~25题)
最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,所以先补一下Rust的基础知识.学习了一段时间,发现Rust的学习曲线非常陡峭,不过仍有快速入门的办法. 学习任何一项技能最怕没有 ...
- 用欧拉计划学Rust语言(第17~21题)
最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,所以先补一下Rust的基础知识.学习了一段时间,发现Rust的学习曲线非常陡峭,不过仍有快速入门的办法. 学习任何一项技能最怕没有 ...
- 用欧拉计划学习Rust编程(第13~16题)
最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,所以先补一下Rust的基础知识.学习了一段时间,发现Rust的学习曲线非常陡峭,不过仍有快速入门的办法. 学习任何一项技能最怕没有 ...
- 用欧拉计划学Rust语言(第7~12题)
最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,所以先补一下Rust的基础知识.学习了一段时间,发现Rust的学习曲线非常陡峭,不过仍有快速入门的办法. 学习任何一项技能最怕没有 ...
- 通过欧拉计划学Rust(第1~6题)
最近想学习Libra数字货币的MOVE语言,发现它是用Rust编写的,看来想准确理解MOVE的机制,还需要对Rust有深刻的理解,所以开始了Rust的快速入门学习. 看了一下网上有关Rust的介绍,都 ...
- 刷完欧拉计划中难度系数为5%的所有63道题,我学会了Rust中的哪些知识点?
我为什么学Rust? 2019年6月18日,Facebook发布了数字货币Libra的技术白皮书,我也第一时间体验了一下它的智能合约编程语言MOVE,发现这个MOVE是用Rust编写的,看来想准确理解 ...
- 【欧拉计划4】Largest palindrome product
欢迎访问我的新博客:http://www.milkcu.com/blog/ 原文地址:http://www.milkcu.com/blog/archives/1371281760.html 原创:[欧 ...
随机推荐
- Qt error C2338: No Q_OBJECT in the class with the signal错误解决办法(无法编译过信号与槽)
由于没有继承QObject类而引起的 只需继承QObject类即可 如果已经继承了QObject类,编译还出现错误 将QObject类放在最前面继承:public QObject 最后即可编译通过
- C++ const成员变量和成员函数(常成员函数)
在类中,如果你不希望某些数据被修改,可以使用const关键字加以限定.const 可以用来修饰成员变量和成员函数. const成员变量 const 成员变量的用法和普通 const 变量的用法相似,只 ...
- OpenCV 为程序界面添加滑动条
#include <cv.h> #include <highgui.h> using namespace cv; /// 全局变量的声明与初始化 ; int alpha_sli ...
- auto uninstaller (autodesk 修复大师) 简体中文版 更新下载地址
小伙伴是不是遇到 CAD/3dmax/maya/Revit/Inventor 安装失败或者安装不了的问题了呢?AUTODESK系列软件着实令人头疼,CAD/3dmax/maya/Revit/Inven ...
- CentOS 7上Docker的安装
一.安装docker 1.Docker 要求 CentOS 系统的内核版本高于 3.10 ,查看本页面的前提条件来验证你的CentOS 版本是否支持 Docker . 通过 uname -r 命令查看 ...
- 如何为MyEclipse添加XML文档所使用的DTD
1.打开MyEclipse,找到菜单栏"Window"---->"Preferences(首选项)": 2.在左侧导航菜单栏找到"MyEclip ...
- Ubuntu14-04安装redis和php5-redis扩展
PS:在系统安装完后最好执行下列命令更新下软件 实际上只要软件源没什么问题的话,安装什么软件都是OK的. 来开始安装Redis吧~~ 一:如果你的其他都OK的话,可以执行下列命令直接安装 sudo a ...
- 解决android 无法打开 DDMS 中的data目录
把上面操作一遍就可以了,如果还是不行你可以检查下 su 是不是输入错误了.
- mysql中tinyint、smallint、int和bigint类型的用法区别
mysql中tinyint.smallint.int和bigint类型的用法区别: 在MySQL的数据类型中,Tinyint的取值范围是:带符号的范围是-128到127.无符号的范围是0到255(见官 ...
- Swizzling的使用
在oc的runtime机制内有一类方法是可以用来实现类间的方法替换.解决了我们实际开发中诸多常规手段所无法解决的问题.关于Method Swizzling,这里有一篇介绍基本用法的文章 场景 最近出于 ...