K-Folds cross-validator-K折交叉验证实现
简单K折交叉验证源码:(
将数据集拆分为k个连续的折叠(默认情况下不进行混洗)。
然后将每个折叠用作一次验证,而剩下的k-1个折叠形成训练集。
)
import numpy as np
from sklearn.model_selection import KFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
kf = KFold(n_splits=)
kf.get_n_splits(X) print(kf) for train_index, test_index in kf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index] # 输出
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
参考教程:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html And https://machinelearningmastery.com/k-fold-cross-validation/
N次K折交叉验证源码:(重复K折n次,每次重复具有不同的随机性)
import numpy as np
from sklearn.model_selection import RepeatedKFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
rkf = RepeatedKFold(n_splits=, n_repeats=, random_state=) #2次2折交叉验证
for train_index, test_index in rkf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# 输出:
TRAIN: [0 1] TEST: [2 3]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
K-Folds cross-validator-K折交叉验证实现的更多相关文章
- (数据挖掘-入门-6)十折交叉验证和K近邻
主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...
- 机器学习--K折交叉验证和非负矩阵分解
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...
- sklearn的K折交叉验证函数KFold使用
K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...
- k折交叉验证
原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...
- cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考
因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...
- 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...
- 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
- S折交叉验证(S-fold cross validation)
S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...
- 十折交叉验证10-fold cross validation, 数据集划分 训练集 验证集 测试集
机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数 ...
- 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)
10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...
随机推荐
- 把.net Core 项目迁移到VS2019 for MAC
VS2019 for MAC已经发布很长时间了,本以为项目移过去很麻烦,一直没有动作,最近呆家里快发霉了,决定研究研究,没想到一句代码都不需要动,直接完功,这下可以生产了.同学们可以放心整了. 本次平 ...
- 高性能MySQL之锁详解
一.背景 MySQL里面的锁大致可以分成全局锁.表级锁和行锁三类.数据库锁的设计的初衷是处理并发问题.我们知道多用户共享资源的时候,就有可能会出现并发访问的时候,数据库就需要合理的控制资源的访问规则, ...
- 检测js对象是不是数组类型?
面试时候被人问如何检测一个未知变量是不是数组类型,丢脸啊,老祖宗的脸都丢没了,这都不会,回家啃书本去吧!!! var a = [];方法一:Array.isArray([]) //true type ...
- 3DGIS+BIM集成与智慧城市应用
ZTMap3D是基于网络的三维地理信息系统平台软件,利用 ZTMap3D能够实现三维地理信息和虚拟现实,是数字化地球和数字化城市建设的基础平台. BIM(building information mo ...
- Java原来还可以这么学:如何搞定面试中必考的集合类
原创声明 本文作者:黄小斜 转载请务必在文章开头注明出处和作者. 系列文章介绍 本文是<五分钟学Java>系列文章的一篇 本系列文章主要围绕Java程序员必须掌握的核心技能,结合我个人三年 ...
- 助力SpringBoot自动配置的条件注解ConditionalOnXXX分析--SpringBoot源码(三)
注:该源码分析对应SpringBoot版本为2.1.0.RELEASE 1 前言 本篇接 如何分析SpringBoot源码模块及结构?--SpringBoot源码(二) 上一篇分析了SpringBoo ...
- WEB渗透 - SQL注入(持续更新)
SQL注入 按变量类型分:数字型和字符型 按HTTP提交方式分:POST注入.GET注入和Cookie注入 按注入方式分:布尔注入.联合注入.多语句注入.报错注入.延时注入.内联注入 按数据库类型分: ...
- wpf 菜单样式和绑定树形数据
前言 在wpf开发中,经常会使用到Menu和ContentMenu.但是原生的样式比较简陋,对于比较追求界面美好的人来说是十分不友好的.那么,这就涉及到对Menu的样式修改了.与此同时,我们还希望Me ...
- Layui select下拉框改变之 change 监听事件(转)
在layui中使用 jquery 触发select 的 change事件无效 使用layui.use监听select事件 <select lay-filter="demo" ...
- Python基础篇(五)_文件和数据格式化
Python基础篇_文件和数据格式化 文件的使用:文件打开.关闭.读写 文件打开:通过open()函数打开文件,并返回一个操作文件的变量. 使用语法:<变量名> = (<文件路径以及 ...