K-Folds cross-validator-K折交叉验证实现
简单K折交叉验证源码:(
将数据集拆分为k个连续的折叠(默认情况下不进行混洗)。
然后将每个折叠用作一次验证,而剩下的k-1个折叠形成训练集。
)
import numpy as np
from sklearn.model_selection import KFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
kf = KFold(n_splits=)
kf.get_n_splits(X) print(kf) for train_index, test_index in kf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index] # 输出
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
参考教程:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html And https://machinelearningmastery.com/k-fold-cross-validation/
N次K折交叉验证源码:(重复K折n次,每次重复具有不同的随机性)
import numpy as np
from sklearn.model_selection import RepeatedKFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
rkf = RepeatedKFold(n_splits=, n_repeats=, random_state=) #2次2折交叉验证
for train_index, test_index in rkf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# 输出:
TRAIN: [0 1] TEST: [2 3]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
K-Folds cross-validator-K折交叉验证实现的更多相关文章
- (数据挖掘-入门-6)十折交叉验证和K近邻
主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...
- 机器学习--K折交叉验证和非负矩阵分解
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...
- sklearn的K折交叉验证函数KFold使用
K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...
- k折交叉验证
原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...
- cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考
因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...
- 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...
- 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
- S折交叉验证(S-fold cross validation)
S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...
- 十折交叉验证10-fold cross validation, 数据集划分 训练集 验证集 测试集
机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数 ...
- 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)
10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...
随机推荐
- Electron打包H5网页为桌面运行程序
一.安装配置环境 Electron(一种桌面应用程序运行时),Electron 把 Chromium 和 Node 合并到一个单独的运行时里面,很适合开发桌面 web 形式的应用程序,通过Node它提 ...
- GPS北斗NTP校时服务器原理及功能介绍
在科技的发展下GPS北斗NTP校时服务器也得到了广泛应用,比如工业.科研.航空航天.公共场所等领域都用到了GPS北斗NTP校时服务器,该时间服务器以卫星时间为基准授时准确,替代了传统钟表授时的单一和时 ...
- Redis主从原理及哨兵模式
1.Redis主从搭建 主从的搭建很简单,主节点设置连接密码,从节点的配置上主节点的ip和端口,以及密码,一般从节点我们都设置只读模式. 主节点配置: 主节点密码: requirepass xxx 从 ...
- background-attachment 制造视差滚动效果案例
简介 background-attachment 属性设置背景图像是否固定或者随着页面的其余部分滚动.可能的值有三个: scroll 默认值.背景图像会随着页面其余部分的滚动而移动. fixed 当页 ...
- C++ 别踩白块小游戏练习
#include <iostream> #include <stdio.h> #include <stdlib.h> #include <easyx.h> ...
- 解决不管其他元素z-index设置多高,都在视频下面的方法
<div style="z-index:-1"> <embed name="Movie1" src="http://ecards.s ...
- android 练习效果(界面一)
- 推荐一款优秀的web自动化测工具
在业务使用的自动化测试工具很多.有开源的,有商业化的,各有各得特色,各有各得优点!下面我就介绍几个我用过的一款非常优秀的国产自动化测试工具.在现有的自动化软件当中,都是以元素的name.id.xpat ...
- ECCV 2018 目标检测 | IoU-Net:将IoU的作用发挥到极致
常见的目标检测算法缺少了定位效果的学习,IoU-Net提出IoU predictor.IoU-guided NMS和Optimization-based bounding box refinement ...
- 几十万学费总结出来的Ddos攻击防护经验!
本人从事网络安全行业十余年年.有十年被骗经验.被骗了很多回(都说能防300G,500G,买完就防不住了),本文当然重点给大家说明,ddos攻击是什么,中小企业如何防护,用到成本等. 言归正传 首先我们 ...