简单K折交叉验证源码:(

将数据集拆分为k个连续的折叠(默认情况下不进行混洗)。

然后将每个折叠用作一次验证,而剩下的k-1个折叠形成训练集。

import numpy as np
from sklearn.model_selection import KFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
kf = KFold(n_splits=)
kf.get_n_splits(X) print(kf) for train_index, test_index in kf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index] # 输出
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]

参考教程:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html     And    https://machinelearningmastery.com/k-fold-cross-validation/

N次K折交叉验证源码:(重复K折n次,每次重复具有不同的随机性

import numpy as np
from sklearn.model_selection import RepeatedKFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
rkf = RepeatedKFold(n_splits=, n_repeats=, random_state=) #2次2折交叉验证
for train_index, test_index in rkf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# 输出:
TRAIN: [0 1] TEST: [2 3]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]

K-Folds cross-validator-K折交叉验证实现的更多相关文章

  1. (数据挖掘-入门-6)十折交叉验证和K近邻

    主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...

  2. 机器学习--K折交叉验证和非负矩阵分解

    1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...

  3. sklearn的K折交叉验证函数KFold使用

    K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...

  4. k折交叉验证

    原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...

  5. cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考

    因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...

  6. 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)

    本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...

  7. 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播

    下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...

  8. S折交叉验证(S-fold cross validation)

    S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...

  9. 十折交叉验证10-fold cross validation, 数据集划分 训练集 验证集 测试集

    机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数 ...

  10. 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)

    10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...

随机推荐

  1. Python-PhantomJS的安装和使用

    PhantomJS无需浏览器的Web测试: PhantomJS官网下载地址:https://phantomjs.org/download.html 下载PhantomJS zip文件,解压放置在D:\ ...

  2. [Tensorflow-CPU完整安装过程-Win10]新手各种踩过的坑

    流程介绍:先安装Anaconda(不同Python版本对于Anaconda不同!!见图),然后就是在Anaconda Prompt里面安装Tensorflow即可. 环境介绍:Anaconda3-4. ...

  3. Java基础面试系列(一)

    Java基础面试总结(一) 1. 面向对象和面向过程的区别 面向过程 面向对象 性能 高于面向对象 类加载的时候需要实例化,比较消耗资源 三易(易维护,易复用,易扩展) 不如面向对象 具有封装,继承, ...

  4. 部署nginx后无法访问数据库,查看www-error.log日志报错Class 'mysqli' not found in /usr/local/nginx/html/mysql.php on line 2

    检查你的php-mysql包是否安装 [root@localhost nginx]# rpm -qa php-mysql 没有任何输出则没有安装,接下来用yum安装php-mysql yum -y i ...

  5. GO系列 | 5分钟入门GO【译】

    什么是Google Go? Google Go是由Robert Griesmer,Rob Pike和Ken Thompson在Google设计的一种开源编程语言. Go在语法上类似于C语言: 除了内存 ...

  6. vue中v-slot使用

    vue中v-slot使用 1,v-slot的使用步骤 <!-- slot.vue--> <!-- 通过name属性指定具名插槽,没有name属性的为默认插槽--> <sl ...

  7. JavaScript零宽字符

    什么是零宽字符 一种不可打印的Unicode字符, 在浏览器等环境不可见, 但是真是存在, 获取字符串长度时也会占位置, 表示某一种控制功能的字符. 常见的零宽字符有哪些 零宽空格(zero-widt ...

  8. .NET Core技术研究-HttpContext访问的正确姿势

    将ASP.NET升级到ASP.NET Core之后,相信大家都会遇到HttpContext.Current无法使用的问题.这也是我们迁移ASP.NET Core必须解决的问题. 本文我们详细讨论一下, ...

  9. (翻译) 使用Unity进行AOP对象拦截

    Unity 是一款知名的依赖注入容器( dependency injection container) ,其支持通过自定义扩展来扩充功能. 在Unity软件包内 默认包含了一个对象拦截(Interce ...

  10. 推荐一款优秀的web自动化测工具

    在业务使用的自动化测试工具很多.有开源的,有商业化的,各有各得特色,各有各得优点!下面我就介绍几个我用过的一款非常优秀的国产自动化测试工具.在现有的自动化软件当中,都是以元素的name.id.xpat ...