K-Folds cross-validator-K折交叉验证实现
简单K折交叉验证源码:(
将数据集拆分为k个连续的折叠(默认情况下不进行混洗)。
然后将每个折叠用作一次验证,而剩下的k-1个折叠形成训练集。
)
import numpy as np
from sklearn.model_selection import KFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
kf = KFold(n_splits=)
kf.get_n_splits(X) print(kf) for train_index, test_index in kf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index] # 输出
TRAIN: [2 3] TEST: [0 1]
TRAIN: [0 1] TEST: [2 3]
参考教程:https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html And https://machinelearningmastery.com/k-fold-cross-validation/
N次K折交叉验证源码:(重复K折n次,每次重复具有不同的随机性)
import numpy as np
from sklearn.model_selection import RepeatedKFold
X = np.array([[, ], [, ], [, ], [, ]])
y = np.array([, , , ])
rkf = RepeatedKFold(n_splits=, n_repeats=, random_state=) #2次2折交叉验证
for train_index, test_index in rkf.split(X):
print("TRAIN:", train_index, "TEST:", test_index)
X_train, X_test = X[train_index], X[test_index]
y_train, y_test = y[train_index], y[test_index]
# 输出:
TRAIN: [0 1] TEST: [2 3]
TRAIN: [2 3] TEST: [0 1]
TRAIN: [1 2] TEST: [0 3]
TRAIN: [0 3] TEST: [1 2]
K-Folds cross-validator-K折交叉验证实现的更多相关文章
- (数据挖掘-入门-6)十折交叉验证和K近邻
主要内容: 1.十折交叉验证 2.混淆矩阵 3.K近邻 4.python实现 一.十折交叉验证 前面提到了数据集分为训练集和测试集,训练集用来训练模型,而测试集用来测试模型的好坏,那么单一的测试是否就 ...
- 机器学习--K折交叉验证和非负矩阵分解
1.交叉验证 交叉验证(Cross validation),交叉验证用于防止模型过于复杂而引起的过拟合.有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法. 于是可以先在一个子集上做 ...
- sklearn的K折交叉验证函数KFold使用
K折交叉验证时使用: KFold(n_split, shuffle, random_state) 参数:n_split:要划分的折数 shuffle: 每次都进行shuffle,测试集中折数的总和就是 ...
- k折交叉验证
原理:将原始数据集划分为k个子集,将其中一个子集作为验证集,其余k-1个子集作为训练集,如此训练和验证一轮称为一次交叉验证.交叉验证重复k次,每个子集都做一次验证集,得到k个模型,加权平均k个模型的结 ...
- cross_val_score 交叉验证与 K折交叉验证,嗯都是抄来的,自己作个参考
因为sklearn cross_val_score 交叉验证,这个函数没有洗牌功能,添加K 折交叉验证,可以用来选择模型,也可以用来选择特征 sklearn.model_selection.cross ...
- 小白学习之pytorch框架(7)之实战Kaggle比赛:房价预测(K折交叉验证、*args、**kwargs)
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂( ...
- 小白学习之pytorch框架(6)-模型选择(K折交叉验证)、欠拟合、过拟合(权重衰减法(=L2范数正则化)、丢弃法)、正向传播、反向传播
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) ...
- S折交叉验证(S-fold cross validation)
S折交叉验证(S-fold cross validation) 觉得有用的话,欢迎一起讨论相互学习~Follow Me 仅为个人观点,欢迎讨论 参考文献 https://blog.csdn.net/a ...
- 十折交叉验证10-fold cross validation, 数据集划分 训练集 验证集 测试集
机器学习 数据挖掘 数据集划分 训练集 验证集 测试集 Q:如何将数据集划分为测试数据集和训练数据集? A:three ways: 1.像sklearn一样,提供一个将数据集切分成训练集和测试集的函数 ...
- 10折交叉验证(10-fold Cross Validation)与留一法(Leave-One-Out)、分层采样(Stratification)
10折交叉验证 我们构建一个分类器,输入为运动员的身高.体重,输出为其从事的体育项目-体操.田径或篮球. 一旦构建了分类器,我们就可能有兴趣回答类似下述的问题: . 该分类器的精确率怎么样? . 该分 ...
随机推荐
- [译]介绍一下渐进式 Web App(即时加载) - Part 2
在上一篇,介绍一下渐进式 Web App(离线) - Part 1的文章中,我们讨论了典型的pwa应该是什么样子的并且同时也介绍了 server worker.到目前为止,我们已经缓存了应用壳.在 i ...
- python大佬养成计划----HTML网页设计(序列)
序列化标签 1.有序标签--ol和li 有序列表标签是<ol>,是一个双标签.在每一个列表项目前要使用<li>标签.<ol>标签的形式是带有前后顺序之分的编号.如果 ...
- cocos2d-x android 入门
前一段时间使用传统方式做了一个CS软件,发现 UI 显示的比较慢,突发奇起,开始研究起来 GPU 加速,最后开始学习 cocos2dx. 开发环境以最新的 Cocos2d-x 3.17.1 Andro ...
- PHP变量存储结构
首先声明,我并没有去读PHP的源码,只是对于PHP的有时候诡异的表现感兴趣,找了一下开发人员laruence的博客结合PHP提供的函数debug_zval_dump刺探得到了本博客所阐述的工作机理.如 ...
- 写一个scrapy中间件--ip代理池
middleware文件 # -*- coding: utf-8 -*- # Define here the models for your spider middleware # See docum ...
- css 固比固模型
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- 项目部署Django+celery+redis
celery介绍 1.celery应用举例 1.Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以 ...
- 74. pNextID、pNextVal、pNID的区别
pNextID是平台调用单个新增组件的时候调用的: pNextVal是平台批量新增的时候调用: pNID应该是自己写的 :
- uni-app 遮罩模板
1. common新建mask.vue文件. <template> <view> <view class="cpt-mask"> </vi ...
- MySQL数据库升级
当前不少系统的数据库依旧是MySQL5.6,由于MySQL5.7及MySQL8.0在性能及安全方面有着很大的提升,因此需要升级数据库.本文通过逻辑方式.物理方式原地升级来介绍MySQL5.6 升级至M ...