multi-layer perceptrons, MLP)模型,CvANN_MLP。
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
#include <iostream>
using namespace std;
using namespace cv;
int main()
{
CvANN_MLP bp; //bp网络
CvANN_MLP_TrainParams params; //bp网络参数
params.train_method = CvANN_MLP_TrainParams::BACKPROP;//使用简单的BP算法,还可使用RPROP
params.bp_dw_scale = 0.1;
params.bp_moment_scale = 0.1;
float labels[4][2] = { { 0,0 },{ 0,0 },{ 1,1 },{ 1,1 } }; //训练标签数据,前两个表示男生,后两个表示女生
Mat labelsMat(4, 2, CV_32FC1, labels);
float trainingData[4][2] = { {186,80},{185,81},{160,50},{161,48} }; //训练数据,两个维度,表示身高和体重
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
Mat layerSizes = (Mat_<int>(1, 4) << 2, 2, 2, 2);//含有两个隐含层的网络结构,输入、输出层各两个节点,每个隐含层含两个节点
bp.create(layerSizes, CvANN_MLP::SIGMOID_SYM);//激活函数为SIGMOID函数,还可使用高斯函数(CvANN_MLP::GAUSSIAN),阶跃函数(CvANN_MLP::IDENTITY)
bp.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
//bp.save("bp.xml");//存储模型
//bp.load("bp.xml");//读取模型
Mat sampleMat = (Mat_<float>(1, 2) << 184, 79); //测试数据,为一男生
Mat responseMat;
bp.predict(sampleMat, responseMat);
Point maxLoc;
minMaxLoc(responseMat, NULL, NULL, NULL, &maxLoc); //response为1行(1个测试数据),2列(共两种类别),每列表示该数据与该类相似的可能性,这里取最大的一类
if (maxLoc.x == 0)
cout << "Boy" << endl;
if (maxLoc.x == 1)
cout << "Girl" << endl;
return 0;
}
参考:
【模式识别】OpenCV中使用神经网络
opencv中使用bp神经网络
【opencv】神经网络CvANN_MLP分类
multi-layer perceptrons, MLP)模型,CvANN_MLP。的更多相关文章
- 初识spark的MLP模型
初识Spark的MLP模型 1. MLP介绍 Multi-layer Perceptron(MLP),即多层感知器,是一个前馈式的.具有监督的人工神经网络结构.通过多层感知器可包含多个隐藏层,实现对非 ...
- Theano Multi Layer Perceptron 多层感知机
理论 机器学习技法:https://www.coursera.org/course/ntumltwo 假设上述网址不可用的话,自行度娘找别人做好的种子.或者看这篇讲义也能够:http://www.cn ...
- 一目了然卷积神经网络 - An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks 原文地址:https://ujjwalkarn.me/2016/08/11/intu ...
- (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!
Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...
- (zhuan) How to Train Neural Networks With Backpropagation
this blog from: http://blog.demofox.org/2017/03/09/how-to-train-neural-networks-with-backpropagation ...
- [转]An Intuitive Explanation of Convolutional Neural Networks
An Intuitive Explanation of Convolutional Neural Networks https://ujjwalkarn.me/2016/08/11/intuitive ...
- An Intuitive Explanation of Convolutional Neural Networks
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ An Intuitive Explanation of Convolu ...
- Keras下的文本情感分析简介。与MLP,RNN,LSTM模型下的文本情感测试
# coding: utf-8 # In[1]: import urllib.request import os import tarfile # In[2]: url="http://ai ...
- 【转】OpenCV中使用神经网络 CvANN_MLP
原文见:http://blog.csdn.net/xiaowei_cqu/article/details/9027617 OpenCV的ml模块实现了人工神经网络(Artificial Neural ...
随机推荐
- pycharm连接mysql数据库的时区问题.
登录到mysql的控制台, 执行: set global time_zone='+8:00'; 这设置的是全局时区,重启后失效. 自MySQL 8.0 GA版本开始支持将参数写入并且持久化: set ...
- 机器学习、深度学习中的信息熵、相对熵(KL散度)、交叉熵、条件熵
信息熵 信息量和信息熵的概念最早是出现在通信理论中的,其概念最早是由信息论鼻祖香农在其经典著作<A Mathematical Theory of Communication>中提出的.如今 ...
- java 寒假作业
寒假作业 现在小学的数学题目也不是那么好玩的. 看看这个寒假作业: □ + □ = □ □ - □ = □ □ × □ = □ □ ÷ □ = □ (如果显示不出来,可以参见[图1.jpg]) 每个方 ...
- 我的Grunt之旅-初识gruntfile文件
时间:2018-03-06 18:23 事件:配置 gruntfile.js文件 首先,回忆一下之前的点,grunt项目下面必须有两个文件 ,第一个 package.json ,第二个 Gru ...
- 009.Delphi插件之QPlugins,服务的热插拔
这个DEMO用来演示服务的替换,用起来总是怪怪的感觉,效果图如下 代码如下 unit Frm_Main; interface uses Winapi.Windows, Winapi.Messages, ...
- Hive Join优化经验
大表x小表 这里可以利用mapjoin,SparkSQL中也有mapjoin或者使用广播变量能达到同样效果,此处描述HQL // 开启mapjoin并设定map表大小 set hive.auto.co ...
- leetcode1019 Next Greater Node In Linked List
""" We are given a linked list with head as the first node. Let's number the nodes in ...
- 使用WinDbg分析蓝屏dump原因
大多数人或许都经历过系统蓝屏问题,然而大多数人不清楚该怎么处理蓝屏问题,这里主要对系统蓝屏做一些解释,同时介绍下蓝屏问题分析工具WinDbg分析蓝屏问题的一般步骤. 微软官方对蓝屏的定义是,当系统遇到 ...
- JAVA 使用模板创建DOCX文档)(XDocService 使用报错条数过多报错链接不上服务器)
详细解释https://xdoc.iteye.com/blog/2399451 https://xdoc.iteye.com/ 导入 XDocService.jar 我说一下我遇到的问题 我从数 ...
- 吴裕雄--天生自然java开发常用类库学习笔记:LinkedList类
import java.util.LinkedList ; public class LinkedListDemo01{ public static void main(String args[]){ ...