题目传送门点我传送

Ⅰ.字典树+树型DP

非常奇妙的一种解法

第一部分:构建树

先对来的单词读入,插入字典树

然后对于一颗字典树,其实是有很多无用边的,所以我们需要删去一些边

删去非单词节点和非单词节点之间的边,其实就是下面这个函数

void rebuild(int now,int fa)
{
if(isok[now])//当前节点是单词
{
vec[fa].push_back(now);//连边
fa=now;//换爸爸了
}
for(int i=1;i<=26;i++)
{
if(!tree[now][i]) continue;
rebuild(tree[now][i],fa);//递归
}
}

第二部分:树型DP

对于每一棵子树而言,右选和不选两种方案

选,则子树上的节点都不能再选,即为

\(dp[i][1]=1\)

不选,则子树上的节点可选可不选

\(f[i][0] = \prod_{j\in son[i]}(f[j][0]+f[j][1])\)

因为是计算方案,决策之间是彼此联系的,所以是相乘

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=5009;
int n;
int tree[maxn][27];int isok[maxn],tot;
void insert(string s)
{
int now=0;
for(int i=0;i<s.length();i++)
{
int k=s[i]-'a'+1;
if(!tree[now][k])
tree[now][k]=++tot;//没有节点,新创建一个节点
now=tree[now][k];//去下一个节点
}
isok[now]=1;//标记单词
}
vector<int>vec[maxn];
void rebuild(int now,int fa)
{
if(isok[now])//当前节点是单词
{
vec[fa].push_back(now);//连边
fa=now;//换爸爸了
}
for(int i=1;i<=26;i++)
{
if(!tree[now][i]) continue;
rebuild(tree[now][i],fa);//递归
}
}
ll dp[maxn][3];
void ddp(int now)//开始DP
{
dp[now][1]=dp[now][0]=1;
for(int i=0;i<vec[now].size();i++)//遍历所有儿子
{
int v=vec[now][i];
ddp(v);
dp[now][0]=dp[now][0]*(dp[v][0]+dp[v][1]);//不选父节点
}
}
int main()
{
cin>>n;
string s;
for(int i=1;i<=n;i++) cin>>s,insert(s);
for(int i=1;i<=26;i++)
{
if(!tree[0][i]) continue;
rebuild(tree[0][i],0);//有结点才向下建树
}
ddp(0);//树型DP
cout<<dp[0][0];
}

Ⅱ.线性DP

我们预处理一个\(f[i][j]\)表示第i个单词与第j个单词是否能共存,

然后考虑一个\(dp[i]\)表示在前i个单词中,必须包含第i个单词的子集个数,首先\(dp[i]=1\)(只包含自己一个元素的一个子集方案数)

那么如果前面存在一个\(j<i\),并且\(f[i][j]=1\)(即i与j可以共存),那么j所有的子集方案数加上一个i元素就形成了对应新的方案,那么状态就由j转移到i了,最后,直接累计\(dp[1....n]\)即可,当然最后还要算上空集哟。

但是,这么做的前提是单词必须先排序

为什么呢??因为在\(dp[j]\)的方案中,可能有是\(a[i]\)前缀的单词,那我们就不能转移

但如果按照字典序排过之后,就不存在这种问题。

#include <bits/stdc++.h>
using namespace std;//dp[i]为必须包括i的个数
typedef long long ll;
ll vis[59][59],dp[59];
string a[59];
bool pan(int l,int r)
{
int p1=0,p2=0;
while(p1<a[l].length()&&p2<a[r].length())
if(a[l][p1++]!=a[r][p2++]) return false;
return true;
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i],dp[i]=1;
sort(a+1,a+1+n);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
if(pan(i,j))
vis[i][j]=1;
}
for(int i=2;i<=n;i++)
{
for(int j=1;j<i;j++)
{
if(vis[i][j]==0)//可以放一起
dp[i]+=dp[j];
}
}
ll ans=0;
for(int i=1;i<=n;i++) ans+=dp[i];
cout<<ans+1;
}

P1666前缀单词的更多相关文章

  1. P1666 前缀单词

    P1666 前缀单词 tire树上跑dp 首先将trie树建出来,然后对于每个节点.考虑他的子节点. 子节点的方案数都互不干扰,所以子节点与其他子节点的的方案数可以利用乘法原理算出来. 然后如果这个节 ...

  2. 洛谷 P1666 前缀单词 题解

    题意:给n个单词,如果单词a为单词b的前缀则a,b不能共存,问能共存的集合数(包括空集) 一道dp题,排序后判断,f[i][j]表示i和j是否能共存,f[i][j]=1表示能共存,初始化dp[i]=1 ...

  3. 【luogu P1666 前缀单词】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1666 10.13考试题 当时没想出来,觉得是要用trie做,在trie上跑一个树形dp 结果是写了个子集枚举 ...

  4. Luogu P1666 前缀单词

    校内资格赛题目,差点高一就要\(\tt{AFO}\)了 30分思路 对30%的数据,满足$1≤n≤10 $ 所以我们可以子集枚举,实际得分40pts #include<iostream> ...

  5. 【洛谷 P1666】 前缀单词 (Trie)

    题目链接 考试时暴搜50分...其实看到"单词","前缀"这种字眼时就要想到\(Trie\)的,哎,我太蒻了. 以一个虚点为根,建一棵\(Trie\),然后\( ...

  6. [luoguP1666] 前缀单词(DP)

    传送门 先把所有字符串按照字典序排序一下 会发现有字符串x和y(x再y前面,即字典序小),如果x不是y的前缀,那么在x前面不是x前缀的字符串也不是y的前缀 这样就可以DP了 f[i][j]表示前i个字 ...

  7. [LeetCode] Word Squares 单词平方

    Given a set of words (without duplicates), find all word squares you can build from them. A sequence ...

  8. HDU 1251 字典树(前缀树)

    题目大意 :Ignatius最近遇到一个难题,老师交给他很多单词(只有小写字母组成,不会有重复的单词出现),现在老师要他统计出以某个字符串为前缀的单词数量(单词本身也是自己的前缀).(单词互不相同) ...

  9. 如何区别英语前缀pri,pro,per,pre?

    pri- 前缀pri-来源于拉丁语的这几个形容词“prim.us”, “prim.a”, “prim.um”,表示“第一的”的意思,和“pri.or”, “pri.or”, “pri.us”,是“优先 ...

随机推荐

  1. 上班无聊,自己用python做个小游戏来打发时间

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取t.cn ...

  2. Xshell 设置右键粘贴即是复制

    打开工具->选项->键盘和鼠标面板     1.鼠标部分的右击设置"粘贴剪切板的内容".    2.选择部分,在"自动将所选文本复制到剪切板"前打勾

  3. Jmeter接口测试、性能测试详细介绍

    下面主要就是讲一下Jmeter工具的用法,用法非常简单,比起loadrunner不知道简单多少,并且开源免费~~ 1.接口简介 接口定义 接口: 就是数据交互的入口和出口,是一套标准规范. 接口(硬件 ...

  4. Laravel joinSub 子查询的写法

    $subQuery = $model::query() ->from('table1 as a') ->getQuery(); $query = $model::query() -> ...

  5. vue中data必须是一个函数

    前端面试时经常被问到:“组建中data为什么是函数”? 答案就是:在组件中data必须是一个函数,这样的话,每个实例可以维护一份被返回对象的独立拷贝.

  6. vue2.x学习笔记(十三)

    接着前面的内容:https://www.cnblogs.com/yanggb/p/12595860.html. 组件的注册 注册组件有一些规范约定与注意事项. 组件名的命名规范 在注册一个组件的时候, ...

  7. 基于Neo4j的个性化Pagerank算法文章推荐系统实践

    新版的Neo4j图形算法库(algo)中增加了个性化Pagerank的支持,我一直想找个有意思的应用来验证一下此算法效果.最近我看Peter Lofgren的一篇论文<高效个性化Pagerank ...

  8. 模糊字符串匹配:FuzzyWuzzy

    FuzzyWuzzy 模糊字符串匹配,它使用Levenshtein Distance来计算简单易用的包中序列之间的差异. 前置条件 Python 2.7 or higher difflib pytho ...

  9. shll脚本常用格式和规则使用

    shll脚本格式和规则 脚本文件必须已 .sh 结尾(yuan.sh) 脚本第一行必须是:#!/bin/bash 激活脚本的二种方式(sh yuan.sh)(给脚本X权限,以绝对路径执行脚本) 逻辑与 ...

  10. Tidyverse|数据列的分分合合,爱恨情仇

    Tidyverse|数据列的分分合合,爱恨情仇 本文首发于“生信补给站”Tidyverse|数据列的分分合合,一分多,多合一 TCGA数据挖掘可做很多分析,前期数据“清洗”费时费力但很需要. 比如基因 ...