hdu 4786(生成树)
Fibonacci Tree
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4028 Accepted Submission(s): 1252
Coach Pang is interested in Fibonacci numbers while Uncle Yang wants
him to do some research on Spanning Tree. So Coach Pang decides to solve
the following problem:
Consider a bidirectional graph G with N
vertices and M edges. All edges are painted into either white or black.
Can we find a Spanning Tree with some positive Fibonacci number of white
edges?
(Fibonacci number is defined as 1, 2, 3, 5, 8, ... )
For each test case, the first line contains two integers N(1 <= N <= 105) and M(0 <= M <= 105).
Then M lines follow, each contains three integers u, v (1 <= u,v
<= N, u<> v) and c (0 <= c <= 1), indicating an edge
between u and v with a color c (1 for white and 0 for black).
For each test case, output a line “Case #x: s”. x is the case number
and s is either “Yes” or “No” (without quotes) representing the answer
to the problem.
4 4
1 2 1
2 3 1
3 4 1
1 4 0
5 6
1 2 1
1 3 1
1 4 1
1 5 1
3 5 1
4 2 1
Case #2: No
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <math.h>
#include <queue>
using namespace std;
const int N = ;
int father[N];
struct Edge{
int u,v,color;
}edge[N];
int _find(int x){
if(x!=father[x]) {
father[x] = _find(father[x]);
}
return father[x];
} int n,m;
int cmp(Edge a,Edge b){
return a.color>b.color;
}
int cmp1(Edge a,Edge b){
return a.color<b.color;
}
int kruskal(){
int cost=;
for(int i=;i<m;i++){
int x=_find(edge[i].u);
int y=_find(edge[i].v);
if(x!=y){
father[x] = y;
cost+=edge[i].color;
}
}
return cost;
}
bool vis[N];
void init(){
memset(vis,false,sizeof(vis));
int a=,b=;
vis[]=true,vis[] =true;
while(a+b<N){
vis[a+b]=true;
swap(a,b);
b = a+b;
}
}
int main()
{
int tcase;
scanf("%d",&tcase);
int t = ;
init();
while(tcase--){
scanf("%d%d",&n,&m);
for(int i=;i<m;i++){
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].color);
}
for(int i=;i<=n;i++) father[i] = i;
sort(edge,edge+m,cmp);
int maxn = kruskal();
int ans = ;
for(int i=;i<=n;i++){
if(father[i]==i) ans++;
if(ans>) break;
}
if(ans>) {
printf("Case #%d: No\n",t++);
continue;
}
for(int i=;i<=n;i++) father[i] = i;
sort(edge,edge+m,cmp1);
int minn = kruskal();
ans = ;
for(int i=;i<=n;i++){
if(father[i]==i) ans++;
if(ans>) break;
}
if(ans>) {
printf("Case #%d: No\n",t++);
continue;
}
//printf("%d %d\n",minn,maxn);
bool flag = false;
for(int i=minn;i<=maxn;i++){
if(vis[i]){
flag = true;
break;
}
}
if(flag) printf("Case #%d: Yes\n",t++);
else printf("Case #%d: No\n",t++);
}
return ;
}
hdu 4786(生成树)的更多相关文章
- HDU 4786 生成树 并查集+极大极小值 黑白边 确定选择白边的数量
题意: 给定一个无向图 n 个点 m条无向边 u v val val == 1 表示边(u, v) 为白边 问能否找到n个点的生成树, 使得白边数为斐波那契数 思路: 并查集求图是否连通( 是否存在生 ...
- HDU 4786 Fibonacci Tree(生成树,YY乱搞)
http://acm.hdu.edu.cn/showproblem.php? pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others ...
- HDU 4786 Fibonacci Tree 生成树
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4786 题意:有N个节点(1 <= N <= 10^5),M条边(0 <= M <= ...
- hdu 4786 最小生成树与最大生成树
/* 题意 :有一些边权值为1和0,判断是否存在一个生成树使得他的总权值为一个斐波那契数. 解法:建立一个最小生成树向里面加权值为1的边替换为0的边,保证原来的联通.因为权值为1,可直接求出最大生成树 ...
- hdu 4786 Fibonacci Tree (最小、最大生成树)
题意: N个点,M条边.每条边连接两个点u,v,且有一个权值c,c非零即一. 问能否将N个点形成一个生成树,并且这棵树的边权值和是一个fibonacii数. (fibonacii数=1,2,3,5,8 ...
- hdu 4786 Fibonacci Tree (2013ACMICPC 成都站 F)
http://acm.hdu.edu.cn/showproblem.php?pid=4786 Fibonacci Tree Time Limit: 4000/2000 MS (Java/Others) ...
- HDU 4786 Fibonacci Tree 最小生成树
Fibonacci Tree 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=4786 Description Coach Pang is intere ...
- HDU 4786(最小生成树 kruskal)
题目链接:pid=4786" target="_blank">http://acm.hdu.edu.cn/showproblem.php?pid=4786 Prob ...
- 【HDU 4786 Fibonacci Tree】最小生成树
一个由n个顶点m条边(可能有重边)构成的无向图(可能不连通),每条边的权值不是0就是1. 给出n.m和每条边的权值,问是否存在生成树,其边权值和为fibonacci数集合{1,2,3,5,8...}中 ...
随机推荐
- GoF23种设计模式之结构型模式之桥接模式
一.概述 将类的抽象部分与实现分部分离开来,使它们都可以独立地变化. 二.适用性 1.你不希望在抽象和实现之间有一个固定的绑定关系的时候.例如:在程序运行时实现部分应可以被选择或切换. ...
- python模块之collections模块
计数器 Counter 计数元素迭代器 elements() 计数对象拷贝 copy() 计数对象清空 clear() from collections import Counter #import ...
- TCP/IP网络编程之多播与广播
多播 多播方式的数据传输是基于UDP完成的,因此,与UDP服务端/客户端的实现非常接近.区别在于,UDP数据传输以单一目标进行,而多播数据同时传递到加入(注册)特定组的大量主机.换言之,采用多播方式时 ...
- linux学习(四) -- supervisor守护进程
supervisor是用Python开发的一套通用的进程管理程序,能将一个普通的命令行进程变为后台daemon,并监控进程状态,异常退出时能自动重启. 1.安装 apt-get install ...
- Oracle数据库迁移--->从Windows到Linux
I did a practice to migrate the oracle database from windows to linux operation system. The followin ...
- 35、键盘布局的tableLayout备份
<TableLayout android:layout_width="wrap_content" android:layout_height="wrap_conte ...
- python - 接口自动化测试 - TestRecharge - 充值接口测试用例
# -*- coding:utf-8 -*- ''' @project: ApiAutoTest @author: Jimmy @file: test_recharge.py @ide: PyChar ...
- Java类和对象 详解(一)---写的很好通俗易懂---https://blog.csdn.net/wei_zhi/article/details/52745268
https://blog.csdn.net/wei_zhi/article/details/52745268
- SpringBoot中Async异步方法和定时任务介绍
1.功能说明 Spring提供了Async注解来实现方法的异步调用. 即当调用Async标识的方法时,调用线程不会等待被调用方法执行完成即返回继续执行以下操作,而被调用的方法则会启动一个独立线程来执行 ...
- 获取表的字段例如 col1,col2,col3
create function [dbo].[f_getcolsByName](@tableName varchar(50)) returns varchar(1000)asbegin declare ...