[暑假集训--数位dp]LightOJ1140 How Many Zeroes?
Jimmy writes down the decimal representations of all natural numbers between and including m and n, (m ≤ n). How many zeroes will he write down?
Input
Input starts with an integer T (≤ 11000), denoting the number of test cases.
Each case contains two unsigned 32-bit integers m and n, (m ≤ n).
Output
For each case, print the case number and the number of zeroes written down by Jimmy.
Sample Input
5
10 11
100 200
0 500
1234567890 2345678901
0 4294967295
Sample Output
Case 1: 1
Case 2: 22
Case 3: 92
Case 4: 987654304
Case 5: 3825876150
问 l 到 r 出现了几个0
记一下出现了几个0,有没有前导零就好
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<int,int>
#define mkp(a,b) make_pair(a,b)
#define pi 3.1415926535897932384626433832795028841971
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
LL n,len,l,r;
LL f[][][][];
int d[];
int zhan[],top;
inline LL dfs(int now,int dat,int tot,int lead,int fp)
{
if (now==)return tot;
if (!fp&&f[now][dat][tot][lead]!=-)return f[now][dat][tot][lead];
LL ans=,mx=fp?d[now-]:;
for (int i=;i<=mx;i++)
{
int nexlead=lead&&i==&&now-!=;
ans+=dfs(now-,i,tot+(i==&&!nexlead),nexlead,fp&&i==d[now-]);
}
if (!fp)f[now][dat][tot][lead]=ans;
return ans;
}
inline LL calc(LL x)
{
if (x<=)return x+;
LL xxx=x;
len=;
while (xxx)
{
d[++len]=xxx%;
xxx/=;
}
LL sum=;
for (int i=;i<=d[len];i++)
{
if (i)sum+=dfs(len,i,,,i==d[len]);
else sum+=dfs(len,,len==,,!d[len]);
}
return sum;
}
main()
{
int T=read(),cnt=;
while (T--)
{
l=read();r=read();
if (r<l)swap(l,r);
memset(f,-,sizeof(f));
printf("Case %d: %lld\n",++cnt,calc(r)-calc(l-));
}
}
LightOJ 1140
[暑假集训--数位dp]LightOJ1140 How Many Zeroes?的更多相关文章
- [暑假集训--数位dp]LightOj1205 Palindromic Numbers
A palindromic number or numeral palindrome is a 'symmetrical' number like 16461 that remains the sam ...
- [暑假集训--数位dp]hdu3709 Balanced Number
A balanced number is a non-negative integer that can be balanced if a pivot is placed at some digit. ...
- [暑假集训--数位dp]hdu3555 Bomb
The counter-terrorists found a time bomb in the dust. But this time the terrorists improve on the ti ...
- [暑假集训--数位dp]hdu3652 B-number
A wqb-number, or B-number for short, is a non-negative integer whose decimal form contains the sub- ...
- [暑假集训--数位dp]hdu2089 不要62
杭州人称那些傻乎乎粘嗒嗒的人为62(音:laoer).杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍, ...
- [暑假集训--数位dp]hdu5787 K-wolf Number
Alice thinks an integer x is a K-wolf number, if every K adjacent digits in decimal representation o ...
- [暑假集训--数位dp]UESTC250 windy数
windy定义了一种windy数. 不含前导零且相邻两个数字之差至少为22 的正整数被称为windy数. windy想知道,在AA 和BB 之间,包括AA 和BB ,总共有多少个windy数? Inp ...
- [暑假集训--数位dp]LightOj1032 Fast Bit Calculations
A bit is a binary digit, taking a logical value of either 1 or 0 (also referred to as "true&quo ...
- [暑假集训--数位dp]hdu5898 odd-even number
For a number,if the length of continuous odd digits is even and the length of continuous even digits ...
随机推荐
- JDK的安装以及环境变量的配置
一.JDK的安装 1.百度搜索jdk1.8 2.进入网页选择Downloads 3. 选择电脑的版本(x86 32位 x64 64位) 4.下载好后,直接双击即可,一直下一步即可完成安装 二.环境变量 ...
- HTML5<section>元素
HTML5<section>元素用来定义页面文档中的逻辑区域或内容的整合(section,区域),比如章节.页眉.页脚或文档中的其他部分. 根据W3C HTML5文档中:section里面 ...
- OC中的宏定义
我们都知道,宏定义是编译期常量.而OC是一种动态语言. 1.iOS系统版本判断的两个宏定义 __IPHONE_OS_VERSION_MAX_ALLOWED // iOS系统版本最大允许 __IPHON ...
- 【dp】守望者的逃离
妙 题目描述 恶魔猎手尤迪安野心勃勃,他背着了暗夜精灵,率领深藏在海底的娜迦族企图叛变.守望者在与尤迪安的交锋中遭遇了围杀,被困在一个荒芜的大岛上.为了杀死守望者,尤迪安开始对这个荒岛施咒,这座岛很快 ...
- python并发编程之进程1(守护进程,进程锁,进程队列)
进程的其他方法 P = Process(target=f,) P.Pid 查看进程号 查看进程的名字p.name P.is_alive() 返回一个true或者False P.terminate( ...
- Linux异常处理体系结构
arm11处理器裸机的异常与中断处理参考: [OK6410裸机程序]异常处理 [OK6410裸机程序]按键中断 另外参考一篇:Linux中断体系结构 在ARM V4及V4T以后的大部分处理器中,中断向 ...
- Linux下的硬件驱动——USB设备(转载)
usb_bulk_msg函数 当对usb设备进行一次读或者写时,usb_bulk_msg 函数是非常有用的; 然而, 当你需要连续地对设备进行读/写时,建议你建立一个自己的urbs,同时将urbs 提 ...
- 计蒜客 The 2018 ACM-ICPC Chinese Collegiate Programming Contest Rolling The Polygon
include <iostream> #include <cstdio> #include <cstring> #include <string> #i ...
- The 2018 ACM-ICPC Chinese Collegiate Programming Contest Maximum Element In A Stack
//利用二维数组模拟 #include <iostream> #include <cstdio> #include <cstring> #include <s ...
- 光学字符识别OCR-3
连通性 可以看到,每一层的图像是由若干连通区域组成的,文字本身是由笔画较为密集组成的,因此往往文字也能够组成一个连通区域.这里的连通定义为 8邻接,即某个像素周围的8个像素都定义为邻接像素,邻接的像素 ...