【BZOJ1336】[Balkan2002]Alien最小圆覆盖 随机增量法
【BZOJ1336】[Balkan2002]Alien最小圆覆盖
Description
给出N个点,让你画一个最小的包含所有点的圆。
Input
先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)
Output
输出圆的半径,及圆心的坐标
Sample Input
8.0 9.0
4.0 7.5
1.0 2.0
5.1 8.7
9.0 2.0
4.5 1.0
Sample Output
5.00 5.00
题解:特地学了一发随机增量法,期望复杂度据说是O(n),但不会证。
起初以1为圆心。先枚举一个点,如果这个点在圆外,则改为以哪个点为圆心;再枚举一个点,如果这个点再圆外,则圆心改为这两个点的中点;再枚举一个点,如果这个点再圆外,则将圆心改为三角形的内心。如何求内心?本人懒得推式子所以写的高斯消元。
由于是期望复杂度所以一开始要将原序列随机排序。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=500010;
const double eps=1e-12;
struct point
{
double x,y;
point() {}
point(double a,double b){x=a,y=b;}
}p[maxn],O;
int n;
double v[10][10],R;
point calc(point a,point b,point c)
{
v[1][1]=2*b.x-2*a.x;
v[1][2]=2*b.y-2*a.y;
v[1][3]=b.x*b.x-a.x*a.x+b.y*b.y-a.y*a.y;
v[2][1]=2*c.x-2*b.x;
v[2][2]=2*c.y-2*b.y;
v[2][3]=c.x*c.x-b.x*b.x+c.y*c.y-b.y*b.y;
int i,j,k;
for(i=1;i<=2;i++)
{
for(j=i+1;j<=2;j++) if(fabs(v[j][i])>fabs(v[i][i])) for(k=i;k<=3;k++) swap(v[i][k],v[j][k]);
double tmp=v[i][i];
for(k=i;k<=3;k++) v[i][k]/=tmp;
for(j=1;j<=2;j++) if(i!=j) for(tmp=v[j][i],k=i;k<=3;k++) v[j][k]-=tmp*v[i][k];
}
point ret(v[1][3],v[2][3]);
return ret;
}
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int main()
{
scanf("%d",&n);
int i,j,k;
for(i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
random_shuffle(p+1,p+n+1);
O=p[1],R=0;
for(i=2;i<=n;i++) if(dis(O,p[i])>R+eps)
{
O=p[i],R=0;
for(j=1;j<i;j++) if(dis(O,p[j])>R+eps)
{
O=point((p[i].x+p[j].x)/2,(p[i].y+p[j].y)/2),R=dis(O,p[i]);
for(k=1;k<j;k++) if(dis(O,p[k])>R+eps)
O=calc(p[i],p[j],p[k]),R=dis(O,p[k]);
}
}
printf("%.2lf\n%.2lf %.2lf",R,O.x,O.y);
return 0;
}
【BZOJ1336】[Balkan2002]Alien最小圆覆盖 随机增量法的更多相关文章
- 【bzoj1336/1337/2823】[Balkan2002]Alien最小圆覆盖 随机增量法
题目描述 给出N个点,让你画一个最小的包含所有点的圆. 输入 先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000. ...
- BZOJ1336 Balkan2002 Alien最小圆覆盖 【随机增量法】*
BZOJ1336 Balkan2002 Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=100000, ...
- bzoj1336: [Balkan2002]Alien最小圆覆盖
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1336 1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 ...
- BZOJ.2823.[AHOI2012]信号塔(最小圆覆盖 随机增量法)
BZOJ 洛谷 一个经典的随机增量法,具体可以看这里,只记一下大体流程. 一个定理:如果一个点\(p\)不在点集\(S\)的最小覆盖圆内,那么它一定在\(S\bigcup p\)的最小覆盖圆上. 所以 ...
- [BZOJ2823][BZOJ1336][BZOJ1337]最小圆覆盖(随机增量法)
算法介绍网上有很多,不解释了. 给出三点坐标求圆心方法:https://blog.csdn.net/liyuanbhu/article/details/52891868 记得先random_shuff ...
- hdu 3007【最小圆覆盖-随机增量法模板】
#include<iostream> #include<cstdio> #include<cmath> #include<algorithm> usin ...
- [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】
题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...
- BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)
今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...
- 洛谷 P1742 最小圆覆盖 (随机增量)
题目链接:P1742 最小圆覆盖 题意 给出 N 个点,求最小的包含所有点的圆. 思路 随机增量 最小圆覆盖一般有两种做法:随机增量和模拟退火.随机增量的精确度更高,这里介绍随机增量的做法. 先将所有 ...
随机推荐
- LeetCode OJ-- Maximum Depth of Binary Tree
https://oj.leetcode.com/problems/maximum-depth-of-binary-tree/ 求二叉树的最大深度 深度优先搜索 /** * Definition for ...
- AutoResetEvent 和 ManualResetEvent 多线程应用
AutoResetEvent 1.用于在多线程,对线程进行阻塞放行 static AutoResetEvent auth0 = new AutoResetEvent(false); static Au ...
- AC日记——【模板】树链剖分 洛谷 P3384
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...
- PHP中的stristr(),strstr(),strpos()速度比较
测速代码: <?php function getmicrotime() { list($usec, $sec) = explode(" ",microtime()); ret ...
- Codeforces 916E Jamie and Tree (换根讨论)
题目链接 Jamie and Tree 题意 给定一棵树,现在有下列操作: $1$.把当前的根换成$v$:$2$.找到最小的同时包含$u$和$v$的子树,然后把这棵子树里面的所有点的值加$x$: ...
- C++ | class size
c++类大小和机器还有编译器有关.64位机器指针大小为8个字节,32位机器为4个字节. 每个实例在内存中都有一个独一无二的地址,为了达到这个目的,编译器往往会给一个空类隐含的加一个字节,这样空类在实例 ...
- Algorithm | Sort
Bubble sort Bubble sort, sometimes incorrectly referred to as sinking sort, is a simple sorting algo ...
- springBoot 整合 mybatis+Oracle
现在比较流行的操作数据库操作层框架Mybatis,下面我们就来看看Springboot如何整合mybatis, 之前一直在用xml形式写sql,这次依然用xml的方式感觉这种还是比较灵活方便. 添加m ...
- centos 7 安装五笔输入法
centos 7 安装五笔输入法 [a@endv ~]$ yum search wubi 已加载插件:fastestmirror, langpacks Loading mirror speeds fr ...
- 又一次遇到Data truncation: Data too longData truncation: Data too long问题
往MySQL的blob字段上传文件,结果又出现了Data truncation: Data too longData truncation: Data too long异常. 我的第一反应是查看/et ...