【BZOJ1336】[Balkan2002]Alien最小圆覆盖

Description

给出N个点,让你画一个最小的包含所有点的圆。

Input

先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000.0)

Output

输出圆的半径,及圆心的坐标

Sample Input

6
8.0 9.0
4.0 7.5
1.0 2.0
5.1 8.7
9.0 2.0
4.5 1.0

Sample Output

5.00
5.00 5.00

题解:特地学了一发随机增量法,期望复杂度据说是O(n),但不会证。

起初以1为圆心。先枚举一个点,如果这个点在圆外,则改为以哪个点为圆心;再枚举一个点,如果这个点再圆外,则圆心改为这两个点的中点;再枚举一个点,如果这个点再圆外,则将圆心改为三角形的内心。如何求内心?本人懒得推式子所以写的高斯消元。

由于是期望复杂度所以一开始要将原序列随机排序。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=500010;
const double eps=1e-12;
struct point
{
double x,y;
point() {}
point(double a,double b){x=a,y=b;}
}p[maxn],O;
int n;
double v[10][10],R;
point calc(point a,point b,point c)
{
v[1][1]=2*b.x-2*a.x;
v[1][2]=2*b.y-2*a.y;
v[1][3]=b.x*b.x-a.x*a.x+b.y*b.y-a.y*a.y;
v[2][1]=2*c.x-2*b.x;
v[2][2]=2*c.y-2*b.y;
v[2][3]=c.x*c.x-b.x*b.x+c.y*c.y-b.y*b.y;
int i,j,k;
for(i=1;i<=2;i++)
{
for(j=i+1;j<=2;j++) if(fabs(v[j][i])>fabs(v[i][i])) for(k=i;k<=3;k++) swap(v[i][k],v[j][k]);
double tmp=v[i][i];
for(k=i;k<=3;k++) v[i][k]/=tmp;
for(j=1;j<=2;j++) if(i!=j) for(tmp=v[j][i],k=i;k<=3;k++) v[j][k]-=tmp*v[i][k];
}
point ret(v[1][3],v[2][3]);
return ret;
}
double dis(point a,point b)
{
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
int main()
{
scanf("%d",&n);
int i,j,k;
for(i=1;i<=n;i++) scanf("%lf%lf",&p[i].x,&p[i].y);
random_shuffle(p+1,p+n+1);
O=p[1],R=0;
for(i=2;i<=n;i++) if(dis(O,p[i])>R+eps)
{
O=p[i],R=0;
for(j=1;j<i;j++) if(dis(O,p[j])>R+eps)
{
O=point((p[i].x+p[j].x)/2,(p[i].y+p[j].y)/2),R=dis(O,p[i]);
for(k=1;k<j;k++) if(dis(O,p[k])>R+eps)
O=calc(p[i],p[j],p[k]),R=dis(O,p[k]);
}
}
printf("%.2lf\n%.2lf %.2lf",R,O.x,O.y);
return 0;
}

【BZOJ1336】[Balkan2002]Alien最小圆覆盖 随机增量法的更多相关文章

  1. 【bzoj1336/1337/2823】[Balkan2002]Alien最小圆覆盖 随机增量法

    题目描述 给出N个点,让你画一个最小的包含所有点的圆. 输入 先给出点的个数N,2<=N<=100000,再给出坐标Xi,Yi.(-10000.0<=xi,yi<=10000. ...

  2. BZOJ1336 Balkan2002 Alien最小圆覆盖 【随机增量法】*

    BZOJ1336 Balkan2002 Alien最小圆覆盖 Description 给出N个点,让你画一个最小的包含所有点的圆. Input 先给出点的个数N,2<=N<=100000, ...

  3. bzoj1336: [Balkan2002]Alien最小圆覆盖

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1336 1336: [Balkan2002]Alien最小圆覆盖 Time Limit: 1 ...

  4. BZOJ.2823.[AHOI2012]信号塔(最小圆覆盖 随机增量法)

    BZOJ 洛谷 一个经典的随机增量法,具体可以看这里,只记一下大体流程. 一个定理:如果一个点\(p\)不在点集\(S\)的最小覆盖圆内,那么它一定在\(S\bigcup p\)的最小覆盖圆上. 所以 ...

  5. [BZOJ2823][BZOJ1336][BZOJ1337]最小圆覆盖(随机增量法)

    算法介绍网上有很多,不解释了. 给出三点坐标求圆心方法:https://blog.csdn.net/liyuanbhu/article/details/52891868 记得先random_shuff ...

  6. hdu 3007【最小圆覆盖-随机增量法模板】

    #include<iostream> #include<cstdio> #include<cmath> #include<algorithm> usin ...

  7. [BZOJ 1336] [Balkan2002] Alien最小圆覆盖 【随机增量法】

    题目链接:BZOJ - 1336 题目分析 最小圆覆盖有一个算法叫做随机增量法,看起来复杂度像是 O(n^3) ,但是可以证明其实平均是 O(n) 的,至于为什么我不知道= = 为什么是随机呢?因为算 ...

  8. BZOJ 1337: 最小圆覆盖1336: [Balkan2002]Alien最小圆覆盖(随机增量法)

    今天才知道有一种东西叫随机增量法就来学了= = 挺神奇的= = A.令ci为包括前i个点的最小圆,若第i+1个点无法被ci覆盖,则第i+1个点一定在ci+1上 B.令ci为包括前i个点的最小圆且p在边 ...

  9. 洛谷 P1742 最小圆覆盖 (随机增量)

    题目链接:P1742 最小圆覆盖 题意 给出 N 个点,求最小的包含所有点的圆. 思路 随机增量 最小圆覆盖一般有两种做法:随机增量和模拟退火.随机增量的精确度更高,这里介绍随机增量的做法. 先将所有 ...

随机推荐

  1. AC日记——【模板】普通平衡树(Treap/SBT) 洛谷 P3369

    [模板]普通平衡树(Treap/SBT) 思路: 劳资敲了一个多星期: 劳资终于a了: 劳资一直不a是因为一个小错误: 劳资最后看的模板: 劳资现在很愤怒: 劳资不想谈思路!!! 来,上代码: #in ...

  2. Codeforces Round #450 (Div. 2) B. Position in Fraction【数论/循环节/给定分子m 分母n和一个数c,找出c在m/n的循环节第几个位置出现,没出现过输出-1】

    B. Position in Fraction time limit per test 1 second memory limit per test 256 megabytes input stand ...

  3. POJ 3710 Christmas Game [博弈]

    题意:略. 思路:这是个删边的博弈游戏. 关于删边游戏的预备知识:http://blog.csdn.net/acm_cxlove/article/details/7854532 学习完预备知识后,这一 ...

  4. 2016集训测试赛(十九)Problem A: 24点大师

    Solution 这到题目有意思. 首先题目描述给我们提供了一种非常管用的模型. 按照题目的方法, 我们可以轻松用暴力解决20+的问题; 关键在于如何构造更大的情况: 我们发现 \[ [(n + n) ...

  5. 【前端阅读】——《活用PHP、MySQL建构Web世界》摘记之设计技巧

    二.设计技巧 Programming的习惯因人而异,这里只提供一些经验,可以参考. 1.利用Include模块化你的程序代码 Include函数基本上说:就像是把另一个文件(HTML或者PHP程序)读 ...

  6. vue2.X v-model 指令

    1.v-model指令 <!DOCTYPE html> <html> <head> <title></title> <script s ...

  7. apue学习笔记(第五章 标准I/O)

    本章讲述标准I/O库 流和FILE对象 对于标准I/O库,它们的操作是围绕流进行的.流的定向决定了所读.写的字符是单字节还是多字节的. #include <stdio.h> #includ ...

  8. winform制作自定义控件

    一 .概述Windows 窗体控件是可再次使用的组件,它们封装了用户界面功能,并且可以用于客户端 Windows 应用程序.“Windows 窗体”不仅提供了许多现成控件,还提供了自行开发控件的基础结 ...

  9. frame框架及其实例

    框架概念 : 谓框架便是网页画面分成几个框窗,同时取得多个 URL.只需要 <FRAMESET> <FRAME> 即可,面所有框架标记需要放在一个总起的 html 档,这个档案 ...

  10. Oracle TNS路径

    修改tnsnames.oRA,监听文件   Oracle TNS路径 G:\Oracle\product\11.2.0\client_1\network\admin\tnsnames.oRA