【BZOJ4167】永远的竹笋采摘 分块+树状数组
【BZOJ4167】永远的竹笋采摘
题解:我们考虑有多少点对(a,b)满足a与b的差值是[a,b]中最小的。以为是随机数据,这样的点对数目可能很少,实测是O(n)级别的,那么我们已知了有这么多可能对答案造成贡献的点对,如何将它们求出来呢?
考虑分块,因为所有数大小在[1,n]中,我们可以对于每个块,预处理出整个块到所有数的最小差值。然后从右往左枚举每一个点,再枚举右面所有的块,如果这个块到当前数的差值比之前的要小,那就暴力进入块中扫一遍。与此同时,我们需要知道是否已经存在这样的点对,被当前的点对完全包含且差值更小。这个可以用树状数组搞定。
最后,我们得到所有的点对,问题就变成了在数轴上选取k个互不相交的线段,使得线段权值和最小。跑个DP就行了。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
const int maxn=60010;
int n,m,B,cnt,minn;
int s[maxn],v[maxn],p[maxn];
int cls[250][maxn],f[2][maxn],to[500000],next[500000],head[maxn],val[500000];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int z(int x)
{
return x>0?x:-x;
}
void updata(int x,int val)
{
for(int i=x;i<=n;i+=i&-i) s[i]=min(s[i],val);
}
int query(int x)
{
int i,ret=1<<30;
for(i=x;i;i-=i&-i) ret=min(ret,s[i]);
return ret;
}
void test(int a,int b)
{
int c=z(v[b]-v[a]);
a++,b++,minn=min(minn,c);
if(query(b)<=c) return ;
updata(b,c);
to[cnt]=a,val[cnt]=c,next[cnt]=head[b],head[b]=cnt++;
}
int main()
{
//freopen("bz4168.in","r",stdin);
n=rd(),m=rd(),B=ceil(sqrt(n));
int i,j,k,last;
for(i=0;i<n;i++) v[i]=rd();
memset(cls,0x3f,sizeof(cls));
memset(s,0x3f,sizeof(s));
for(i=0;i<n;i+=B)
{
for(j=i;j<i+B&&j<n;j++) p[v[j]]=1;
for(last=-1<<30,j=1;j<=n;j++) cls[i/B][j]=min(cls[i/B][j],j-last),last=p[j]?j:last;
for(last=1<<30,j=n;j>=1;j--) cls[i/B][j]=min(cls[i/B][j],last-j),last=p[j]?j:last;
for(j=i;j<i+B&&j<n;j++) p[v[j]]=0;
}
memset(head,-1,sizeof(head));
for(i=n-1;i>=0;i--)
{
minn=1<<30;
for(j=i+1;j<i/B*B+B&&j<n;j++) if(v[j]!=v[i]&&z(v[j]-v[i])<minn) test(i,j);
for(j=i/B+1;j*B<n;j++) if(cls[j][v[i]]<minn) for(k=j*B;k<j*B+B&&k<n;k++) if(v[k]!=v[i]&&z(v[k]-v[i])<minn) test(i,k);
}
for(k=1;k<=m;k++)
{
for(i=0;i<=n;i++) f[k&1][i]=1<<30;
for(i=1;i<=n;i++)
{
f[k&1][i]=f[k&1][i-1];
for(j=head[i];j!=-1;j=next[j]) f[k&1][i]=min(f[(k&1)^1][to[j]-1]+val[j],f[k&1][i]);
}
}
printf("%d\n",f[m&1][n]);
return 0;
}
【BZOJ4167】永远的竹笋采摘 分块+树状数组的更多相关文章
- 【BZOJ 3295】动态逆序对 - 分块+树状数组
题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...
- 【bzoj2141】排队 分块+树状数组
题目描述 排排坐,吃果果,生果甜嗦嗦,大家笑呵呵.你一个,我一个,大的分给你,小的留给我,吃完果果唱支歌,大家乐和和.红星幼儿园的小朋友们排起了长长地队伍,准备吃果果.不过因为小朋友们的身高有所区别, ...
- 【bzoj3744】Gty的妹子序列 分块+树状数组+主席树
题目描述 我早已习惯你不在身边, 人间四月天 寂寞断了弦. 回望身后蓝天, 跟再见说再见…… 某天,蒟蒻Autumn发现了从 Gty的妹子树(bzoj3720) 上掉落下来了许多妹子,他发现 她们排成 ...
- 【分块+树状数组】codechef November Challenge 2014 .Chef and Churu
https://www.codechef.com/problems/FNCS [题意] [思路] 把n个函数分成√n块,预处理出每块中各个点(n个)被块中函数(√n个)覆盖的次数 查询时求前缀和,对于 ...
- Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2886 Solved: 924[Submit][Stat ...
- 【XSY2111】Chef and Churus 分块 树状数组
题目描述 有一个长度为\(n\)的数组\(A\)和\(n\)个区间\([l_i,r_i]\),有\(q\)次操作: \(1~x~y\):把\(a_x\)改成\(y\) \(2~x~y\):求第\(l\ ...
- BZOJ3787:Gty的文艺妹子序列(分块,树状数组)
Description Autumn终于会求区间逆序对了!Bakser神犇决定再考验一下他,他说道: “在Gty的妹子序列里,某个妹子的美丽度可也是会变化的呢.你还能求出某个区间中妹子们美丽度的逆序对 ...
- 2018.06.30 BZOJ4765: 普通计算姬(dfs序+分块+树状数组)
4765: 普通计算姬 Time Limit: 30 Sec Memory Limit: 256 MB Description "奋战三星期,造台计算机".小G响应号召,花了三小时 ...
- 【xsy2111】 【CODECHEF】Chef and Churus 分块+树状数组
题目大意:给你一个长度为$n$的数列$a_i$,定义$f_i=\sum_{j=l_i}^{r_i} num_j$. 有$m$个操作: 操作1:询问一个区间$l,r$请你求出$\sum_{i=l}^{r ...
随机推荐
- Codeforces 899 C.Dividing the numbers-规律
C. Dividing the numbers time limit per test 1 second memory limit per test 256 megabytes input s ...
- Android开发 大坑Fragment
是不是弄了半天你的Fragment老是Replace不了,我的原因是:弄成静 态的,然后要动态Replace,竟然不行,后来框个FragmentLayout,改成全动态添加和Replace,OK了.
- 2018年东北农业大学春季校赛 B wyh的矩阵【找规律】
链接:https://www.nowcoder.com/acm/contest/93/B来源:牛客网 题目描述 给你一个n*n矩阵,按照顺序填入1到n*n的数,例如n=5,该矩阵如下 1 2 3 4 ...
- BZOJ1088(SCOI2005)
枚举第一行第一个格子的状态(有雷或者无雷,0或1),然后根据第一个格子推出后面所有格子的状态.推出之后判断解是否可行即可. #include <bits/stdc++.h> using n ...
- 透过ReentrantLock窥探AQS
背景 JDK1.5引入的并发包提供了一系列支持中等并发的类,这些组件是一系列的同步器,几乎任一同步器都可以实现其他形式的同步器,例如,可以用可重入锁实现信号量或者用信号量实现可重入锁.但是,这样做带来 ...
- 解决百度ueditor配置上传目录为外部目录时,项目启动访问不到图片的问题。
如图所示,公司项目用到了百度的ueditor,配置的上传目录并不在项目根目录下,而是在外部目录中.于是在上传图片时,出现了无法获取图片的问题. 解决方法:添加该目录至tomcat项目部署目录中,如下图 ...
- 成长笔记--解决Eclipse 变量名的自动补全问题
大家使用eclipse敲代码的时候,是不是都被这样一个问题困扰着.就是键入一个变量名的时候,会自动提示补全:在你的变量名后面加上类型的名字!这个时候,你就必须键入Esc才不会自动补全你的变量,如果你键 ...
- maxwell简单部署使用
详细资料可以参考maxwell官网 (mysql + maxwell + kafka + elasticsearch) 说明:本文主要是关于配置maxwell监听mysql的数据修改并实时将修改内容 ...
- [置顶]
django快速获取项目所有的URL
django快速获取项目所有的URL django1.10快速获取项目所有的URL列表,可以用于权限控制 函数如下: import re def get_url(urllist , parent='' ...
- 用PHP实现弹出消息提示框
方法一: echo "<script>alert('提示内容')</script>"; 方法二: echo '<script language=&qu ...