POJ 3017 Cut the Sequence (单调队列优化DP)
题意:
给定含有n个元素的数列a,要求将其划分为若干个连续子序列,使得每个序列的元素之和小于等于m,问最小化所有序列中的最大元素之和为多少?(n<=105。例:n=8, m=17,8个数分别为2 2 2 | 8 1 8 |1 2,答案为12。)
思路:
想明白一个队列+一个set就能完美解决这个问题?
首先DP的转移式子是:dp[i]=min( dp[j] +max[j+1, i] ),且sum[i]-sum[j]<=m,j为枚举的断开处。暴力寻找一个合适的j的复杂度为O(n2)。那么问题就在于如何寻找这个合适的j。
先假设j的范围是(low, i],而max是随着j的增大单调不减的,则max[k,i]>=max[p,i]且k<p是肯定的。那么如果出现max[k,i]=max[p,i]且k<p的话,j=k明显更佳,因为dp[k]<=dp[p]是肯定的!那么如果出现max[k,i]>max[p,i]且k<p的话,取哪个就难说了,也是因为dp[k]<=dp[p] 。
根据转移式子知道,j肯定是不跟i同组的,这是根据dp[j]的定义来决定的。那么j有可能的取值为low,或者为k(a[k]>a[i]),那么单调队列就形成了,队列中保存下标,表示所有a[k]>a[i]且low<=k<=i。
但是这队列有什么用?值val可能等于队列中任一元素u,而val=dp[u]+max[u+1,i]是没有什么规律的。直接将所有val装进set中,最小的set.begin()就是我们要找的答案了。如果维护单调队列时需要删除怎么办?直接将算出来的val在set中删除。
注意:如果队列为空,即a[i]是a[low,i]中的最大值,那么最多只能取j=low。如果low一旦改变了,队头元素也有可能改变喔~因为队头算出来的val可能是根据更小的low算出来的。由于多个val相同的情况是存在的,所以用multiset。
//#include <bits/stdc++.h>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <set>
#include <deque>
#include <map>
#include <algorithm>
#include <vector>
#include <iostream>
#define pii pair<int,int>
#define back que[rear-1]
#define INF 0x7f7f7f7f
#define LL long long
#define ULL unsigned long long
using namespace std;
const double PI = acos(-1.0);
const int N=;
LL sum[N], has[N], dp[N];
int a[N], que[N], top, rear, low;
multiset<LL> sett;
LL cal(int n,LL m)
{
for(int i=; i<=n; i++)
{
if(a[i]>m) return -;
while( sum[i]-sum[low]>m ) low++; //过期的只可能在top处
while( top<rear && que[top]<=low )
sett.erase( has[top++] ); if(top<rear)
{
//队头的val有可能会改变,因为下限low提高了
sett.erase( has[top] );
has[top]=dp[low]+a[ que[top] ];
sett.insert( has[top] );
}
//插入队列先
while(top<rear && a[i]>a[ que[rear-] ] )
sett.erase( has[--rear] ); que[rear]=i; //只记下标
LL val=;
if(top^rear) val=dp[ que[rear-] ]+a[i];
else val=dp[low]+a[i]; //top=rear时,a[i]就是最大的
sett.insert( val );
has[rear++]=val;
dp[i]=*sett.begin(); //取最小
}
return dp[n];
} int main()
{
//freopen("input.txt","r",stdin);
int n;LL m;
scanf("%d%lld", &n, &m);
for(int i=; i<=n; i++) //机器
{
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
}
printf("%lld\n", cal(n,m));
return ;
}
AC代码
POJ 3017 Cut the Sequence (单调队列优化DP)的更多相关文章
- $Poj3017\ Cut\ The\ Sequence$ 单调队列优化$DP$
Poj AcWing Description 给定一个长度为N的序列 A,要求把该序列分成若干段,在满足“每段中所有数的和”不超过M的前提下,让“每段中所有数的最大值”之和最小. N<=10 ...
- poj3017 Cut the Sequence 单调队列 + 堆 dp
描述 把一个正数列 $A$分成若干段, 每段之和 不超过 $M$, 并且使得每段数列的最大值的和最小, 求出这个最小值. 题目链接 题解 首先我们可以列出一个$O(n^2)$ 的转移方程 : $F_i ...
- 算法笔记--单调队列优化dp
单调队列:队列中元素单调递增或递减,可以用双端队列实现(deque),队列的前面和后面都可以入队出队. 单调队列优化dp: 问题引入: dp[i] = min( a[j] ) ,i-m < j ...
- POJ 1821 Fence(单调队列优化DP)
题解 以前做过很多单调队列优化DP的题. 这个题有一点不同是对于有的状态可以转移,有的状态不能转移. 然后一堆边界和注意点.导致写起来就很难受. 然后状态也比较难定义. dp[i][j]代表前i个人涂 ...
- 单调队列优化DP——习题收集
前言 感觉可以用单调队列优化dp的模型还是挺活的,开个随笔记录一些遇到的比较有代表性的模型,断续更新.主要做一个收集整理总结工作. 记录 0x01 POJ - 1821 Fence,比较适合入门的题, ...
- 单调队列优化DP,多重背包
单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...
- bzoj1855: [Scoi2010]股票交易--单调队列优化DP
单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...
- hdu3401:单调队列优化dp
第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...
- Parade(单调队列优化dp)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others) ...
- BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP
BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...
随机推荐
- Redux API之Store
Store Store 就是用来维持应用所有的 state 树 的一个对象. 改变 store 内 state 的惟一途径是对它 dispatch 一个action. Store 不是类.它只是有几个 ...
- 《Java多线程编程核心技术》读后感(十七)
使线程具有有序性 正常情况下,线程在运行时多个线程之间执行任务的时机时无序的.可以通过改造代码的方式使它们运行具有有序性 package Seven; public class MyThread ex ...
- php array数组(第二部分)
array_fill() 用给定的键值填充数组 参数 index 必须.规定返回数组的起始索引. 参数 number 必须.规定填充的元素的数量,其值必须大于0. 参数 value 必须.规定用于填充 ...
- Docker环境下的前后端分离项目部署与运维(七)Redis高速缓存
Redis高速缓存 利用内存保存数据,读写速度远超硬盘:可以减少I/O操作,降低I/O压力. 发红包.抢红包的数据可以存在高速缓存中,加快处理速度,不需要经过数据库 淘宝首页一些优惠活动商品等热数据可 ...
- httpd.conf------Apache主站点配置
Apache主站点配置 Apache的配置由httpd.conf文件配置,因此下面的配置指令都是在httpd.conf文件中修改. Apache主站点基本配置:ServerRoot “/mnt/sof ...
- nodejs安装使用express
1.用Express 应用程序生成器 express-generator 快速搭建express框架 1.1安装: npm install express-generator -g 1.2 生成目录: ...
- 检查浏览器是否有此插件如flash
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- spring oauth2.0 实现原理
官方原文:http://projects.spring.io/spring-security-oauth/docs/oauth2.html 翻译及修改补充:Alex Liao. 转载请注明来源:htt ...
- 理解SPI
SPI 全称为 Service Provider Interface,是一种服务发现机制.SPI 的本质是将接口实现类的全限定名配置在文件中,并由服务加载器读取配置文件,加载实现类.这样可以在运行时, ...
- easyui的datagrid用js插入数据等编辑功能的实现
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...