题目描述

正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」。现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强的方法就是:买皮肤!小皮球只会玩N个英雄,因此,他也只准备给这N个英雄买皮肤,并且决定,以后只玩有皮肤的英雄。这N个英雄中,第i个英雄有Ki款皮肤,价格是每款CiQ币(同一个英雄的皮肤价格相同)。为了让自己看起来高大上一些,小皮球决定给同学们展示一下自己的皮肤,展示的思路是这样的:对于有皮肤的每一个英雄,随便选一个皮肤给同学看。比如,小皮球共有5个英雄,这5个英雄分别有0,0,3,2,4款皮肤,那么,小皮球就有3*2×4=24种展示的策略。现在,小皮球希望自己的展示策略能够至少达到M种,请问,小皮球至少要花多少钱呢?

输入

第一行,两个整数N,M
第二行,N个整数,表示每个英雄的皮肤数量Ki
第三行,N个整数,表示每个英雄皮肤的价格Ci
共 10 组数据,第i组数据满足:N≤max(5,(log2i)^4) M≤10^17,1≤Ki≤10,1≤Ci≤199。保证有解

输出

一个整数,表示小皮球达到目标最少的花费。

样例输入

3 24
4 4 4
2 2 2

样例输出

18


题解

背包dp

考虑到方案数过多,无法作为状态;而总钱数较少,所以可以以此作为状态。

故设$f[i][j]$表示购买前$i$种皮肤,花费$j$元能够得到的最大方案数。那么可以直接枚举每个皮肤购买的数量然后转移 。

一个小trick:由于题目只要求判断是否达到m,因此当dp值大于m时直接将其赋为m(因为方案数是单调的,只要达到了m,以后的都会达到),避免高精度。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
long long f[125][250010] , p;
int v[125] , c[125];
int main()
{
int n , i , j , k , m = 0;
scanf("%d%lld" , &n , &p);
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &v[i]);
f[0][0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &c[i]);
for(j = 0 ; j <= m ; j ++ ) f[i][j] = f[i - 1][j];
for(j = 2 ; j <= v[i] ; j ++ )
for(k = c[i] * j ; k <= m + c[i] * j ; k ++ )
f[i][k] = min(p , max(f[i][k] , f[i - 1][k - c[i] * j] * j));
m += c[i] * v[i];
}
for(i = 0 ; i <= m ; i ++ )
{
if(f[n][i] >= p)
{
printf("%d\n" , i);
return 0;
}
}
return 0;
}

【bzoj5018】[Snoi2017]英雄联盟 背包dp的更多相关文章

  1. BZOJ5018:[SNOI2017]英雄联盟(背包DP)

    Description 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强的方法就是:买皮肤! 小皮球只会玩N个英雄 ...

  2. 【BZOJ5018】[Snoi2017]英雄联盟 背包

    [BZOJ5018][Snoi2017]英雄联盟 Description 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了 ...

  3. BZOJ5018[Snoi2017]英雄联盟——DP

    题目描述 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不 了网友们的嘲讽,决定变强了,他变强的方法就是:买皮肤!小皮球只会玩N个英雄,因此,他也只 ...

  4. BZOJ5018: [Snoi2017]英雄联盟

    Description 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不 了网友们的嘲讽,决定变强了,他变强的方法就是:买皮肤!小皮球只会玩N个英雄 ...

  5. [BZOJ]5018: [Snoi2017]英雄联盟 DP

    [Snoi2017]英雄联盟 Time Limit: 15 Sec  Memory Limit: 512 MBSubmit: 270  Solved: 139[Submit][Status][Disc ...

  6. bzoj 5018 [Snoi2017]英雄联盟

    题面 https://www.lydsy.com/JudgeOnline/problem.php?id=5018 题解 简单的dp 令dp[i][j]表示前i个英雄 总花费为j 最大能够得到的展示种数 ...

  7. LOJ——#2256. 「SNOI2017」英雄联盟

    https://loj.ac/problem/2256 题目描述 正在上大学的小皮球热爱英雄联盟这款游戏,而且打的很菜,被网友们戏称为「小学生」.现在,小皮球终于受不了网友们的嘲讽,决定变强了,他变强 ...

  8. 背包dp整理

    01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...

  9. hdu 5534 Partial Tree 背包DP

    Partial Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid= ...

随机推荐

  1. Aizu 2304 Reverse Roads(无向流)

    把有向图修改成无向图,并保证每条边的流量守恒并满足有向容量(即abs(flow(u,v) - flow(v,u)) <= 1)满足限制. 得到最大流,根据残流输出答案. 因为最后少了'\n'而W ...

  2. python request下载文件时,显示进度以及网速

    import requests import time def downloadFile(name, url): headers = {'Proxy-Connection':'keep-alive'} ...

  3. JS判断单、多张图片加载完成

    转:http://www.daqianduan.com/6419.html 试想,如果模板中有图片,此时如何判断图片是否加载完成? 在此之前来了解一下jquery的ready与window.onloa ...

  4. DLM分布式锁的实现机制

    1.AST简介 DLM进程(LMON.LMD)之间的跨实例通信是使用高速互联上的IPC层实现的.为了传递锁资源的状态,DLM使用了异步陷阱(AST),它在操作系统处理程序例程中实现为中断.纯粹主义者可 ...

  5. jquery iCheck 插件

    1 官网:http://www.bootcss.com/p/icheck/#download 2 博客:https://www.cnblogs.com/xcsn/p/6307610.html http ...

  6. SOA架构,dubbo,Zookeeper

    1. 分析 由于项目是基于soa的架构,表现层和服务层是不同的工程.所以要实现查询需要两个系统之间进行通信. 如何实现远程通信? 1.Webservice:效率不高基于soap协议.项目中不推荐使用. ...

  7. JDBC中 mysql数据库的连接工具类 Java登录 及增删改查 整理 附带:Navicat Premium 11.0.12中文破解版.zip(下载)mysql数据库工具

    先写一个工具类,有实现MySQL数据库连接的方法,和关闭数据库连接.关闭ResultSet  结果集.关闭PreparedStatement 的方法.代码如下: package com.swift; ...

  8. shell中字符串基本用法

    前言 今天在写脚本时,发现前阶段使用过的一些用法还是需要去百度查找,并且找到的答案还需要自己去筛选,耽误写脚本时间,这一篇对字符串之间的比较和逻辑判断都非常详细,借鉴他人之作,资源共享. 本片主要说明 ...

  9. SummerVocation_Learning--java的线程机制

    线程:是一个程序内部的执行路径.普通程序只有main()一条路径.如下列程序: import java.lang.Thread; //导入线程实现包 public class Test_Thread ...

  10. 洛谷P3371单源最短路径SPFA算法

    SPFA同样是一种基于贪心的算法,看过之前一篇blog的读者应该可以发现,SPFA和堆优化版的Dijkstra如此的相似,没错,但SPFA有一优点是Dijkstra没有的,就是它可以处理负边的情况. ...