【CF840C】On the Bench

题意:给你一个长度为n的数组{ai},定义一个1到n的排列是合法的,当且仅当对于$1\le i <n$,$a_i\times a_{i+1}$不是完全平方数。求所有合法的排列个数。

$n\le 300,a_i\le 10^9$

题解:显然我们先把ai中的平方因子除掉,然后就变成了任意相邻两数不能相同的排列数。显然要将相同的数放到一起处理。

考虑DP,令f[i][j][k]表示枚举到第i个数,一共有j个相邻的位置是相同的,在之前所有和ai相同的数中,有k个相邻的位置 的方案数。转移复杂度$O(n^3)$。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll P=1000000007;
int n;
int v[310];
ll f[2][310][310];
inline void upd(ll &x,const ll &y) {x+=y; if(x>=P) x%=P;}
int main()
{
scanf("%d",&n);
int i,j,k,d=0,tmp=0,t;
for(i=1;i<=n;i++)
{
scanf("%d",&t),v[i]=1;
for(j=2;j*j<=t;j++) if(t%j==0)
{
tmp=0;
while(t%j==0) tmp^=1,t/=j;
if(tmp) v[i]*=j;
}
if(t>1) v[i]*=t;
}
sort(v+1,v+n+1);
f[0][0][0]=1;
for(i=1;i<=n;i++)
{
if(v[i]>v[i-1])
{
for(j=0;j<=i;j++) for(k=1;k<=tmp;k++) upd(f[d][j][0],f[d][j][k]),f[d][j][k]=0;
tmp=0;
}
d^=1,memset(f[d],0,sizeof(f[d]));
for(j=0;j<=i;j++) for(k=0;k<=tmp&&k<=j;k++)
{
upd(f[d][j+1][k+1],f[d^1][j][k]*(2*tmp-k));
if(j) upd(f[d][j-1][k],f[d^1][j][k]*(j-k));
upd(f[d][j][k],f[d^1][j][k]*(i-(2*tmp-k)-(j-k)));
}
tmp++;
}
printf("%lld",f[d][0][0]);
return 0;
}

【CF840C】On the Bench DP的更多相关文章

  1. 【BZOJ4712】洪水(动态dp)

    [BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...

  2. 【题解】Jury Compromise(链表+DP)

    [题解]Jury Compromise(链表+DP) 传送门 题目大意 给你\(n\le 200\)个元素,一个元素有两个特征值,\(c_i\)和\(d_i\),\(c,d \in [0,20]\), ...

  3. 【题解】Making The Grade(DP+结论)

    [题解]Making The Grade(DP+结论) VJ:Making the Grade HNOI-D2-T3 原题,禁赛三年. 或许是我做过的最简单的DP题了吧(一遍过是什么东西) 之前做过关 ...

  4. 【题解】NOIP2017逛公园(DP)

    [题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n​节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...

  5. 【题解】284E. Coin Troubles(dp+图论建模)

    [题解]284E. Coin Troubles(dp+图论建模) 题意就是要你跑一个完全背包,但是要求背包的方案中有个数相对大小的限制 考虑一个\(c_i<c_j\)的限制,就是一个\(c_i\ ...

  6. 【CF917D】Stranger Trees 树形DP+Prufer序列

    [CF917D]Stranger Trees 题意:给你一棵n个点的树,对于k=1...n,问你有多少有标号的n个点的树,与给出的树有恰好k条边相同? $n\le 100$ 题解:我们先考虑容斥,求出 ...

  7. 【CF889E】Mod Mod Mod DP

    [CF889E]Mod Mod Mod 题意:给你一个序列$a_1,a_2...a_n$,定义$f(x,n)=x\mod a_n$,$f(x,i)=x\mod a_i+f(x \mod a_i,i+1 ...

  8. 【BZOJ1210】[HNOI2004]邮递员 插头DP+高精度

    [BZOJ1210][HNOI2004]邮递员 Description Smith在P市的邮政局工作,他每天的工作是从邮局出发,到自己所管辖的所有邮筒取信件,然后带回邮局.他所管辖的邮筒非常巧地排成了 ...

  9. 【BZOJ2331】[SCOI2011]地板 插头DP

    [BZOJ2331][SCOI2011]地板 Description lxhgww的小名叫“小L”,这是因为他总是很喜欢L型的东西.小L家的客厅是一个的矩形,现在他想用L型的地板来铺满整个客厅,客厅里 ...

随机推荐

  1. 安卓开发笔记——Broadcast广播机制(实现自定义小闹钟)

    什么是广播机制? 简单点来说,是一种广泛运用在程序之间的传输信息的一种方式.比如,手机电量不足10%,此时系统会发出一个通知,这就是运用到了广播机制. 广播机制的三要素: Android广播机制包含三 ...

  2. input checkbox复选框点击获取当前选中状态jquery

    function checkAll(id) { //用is判断 // let checkStatus=$(id).is(':checked'); // console.log(checkStatus) ...

  3. 2. 自动化运维系列之Cobbler给Openstack节点安装操作系统。

    preface 我们在一篇博文知道了如何搭建Cobbler,那么下面就通过Cobbler来安抓Openstack所有节点吧. 服务器配置信息如下: 主机名 IP 角色 Cobbler.node.com ...

  4. SDK Manager.exe和AVD Manager.exe缺失,Android SDK Tools在检查java环境时卡住了,未响应卡死!

    之前安装Android Studio的时候根据提示安装了Android SDK,但是发现目录下没有SDK Manager.exe和AVD Manager.exe,导致SDK的一些操作很不方便! 不知道 ...

  5. webpack流程图

  6. JVM虚拟机内存模型以及GC机制

    JAVA堆的描述如下: 内存由 Perm 和 Heap 组成. 其中 Heap = {Old + NEW = { Eden , from, to } } JVM内存模型中分两大块,一块是 NEW Ge ...

  7. Java -- 异常的捕获及处理 -- Java的异常处理机制

    7.1.4 Java的异常处理机制 在整个Java的异常处理中,实际上也是按照面向对象的方式进行处理,处理的步骤如下: ⑴ : 一旦产生异常,则首先会产生一个异常类的实例化对象. ⑵ : 在try语句 ...

  8. kohana 简单使用

    声明:基于公司使用的 Kohana 框架写的,不确定是否适用于原生 Kohana 附:Kohana 3 中文手册,传送门:http://www.lampblog.net/kohana3%E4%BD%B ...

  9. Python中执行外部命令

    有很多需求需要在Python中执行shell命令.启动子进程,并捕获命令的输出和退出状态码,类似于Java中的Runtime类库. subprocess模块的使用: Python使用最广泛的是标准库的 ...

  10. tablayout在中间显示

    <android.support.design.widget.TabLayout android:id="@+id/tabLayout" android:layout_wid ...