poj 2773 Happy 2006 - 二分答案 - 容斥原理
Time Limit: 3000MS | Memory Limit: 65536K | |
Total Submissions: 11161 | Accepted: 3893 |
Description
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Input
Output
Sample Input
2006 1
2006 2
2006 3
Sample Output
1
3
5
Source
想说一下这题的大意,就是找出与m互质的第k个数
这明显是一道数论的题,开始没有想到什么好的方法就暴力,毫无疑问TLE(注:正确的暴力是不会超时的)
后来找了几份题解看了看,找的了正确的做法,用容斥原理求出和它不互质的个数,拿n一减,个数就出来了,
不过这仍然存在一个问题,上面的TLE又跳了出来,又因为这里1到n(1<=n<=m)中间,n的值越大,与m互质
的数更多,很符合二分的特点
下面问题就变成了给了你一个从小到大排列的数组,找到k最早出现的位置(想想为什么,因为当从k-1增加到
第k个的时候,k一定与m互质,所以才会增加一个互质的数)
接下来问题就变得十分简单了,附上秒过的代码(第一次提交手抽,把某个地方的limit打成m,导致速度110ms)
Code:
/**
* poj.org
* Problem#2773
* Accepted
* Time:0ms
* Memory:172k
*/
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
typedef bool boolean;
typedef long long ll;
int m;
ll k;
int factor[];
int _count;
/***
* 分解质因数
*/
void init(int n){
_count = ;
int limit = (int) sqrt(n + 0.5);
for(int i = ;i <= limit;i++){ //不用考虑i是否为指数
if(n == ) break;
if(n % i == ){
factor[_count++] = i; //保存质因数
while(n % i == ) n /= i; //除干净
}
}
if(n > ) factor[_count++] = n;
}
ll getCount(ll n){
if(m == ) return n;
if(n == ) return ;
long long result = n;
for(int i = ;i < ( << _count );i++){ //遍历所有情况
long long temp = i, a = , b = ;
for(int j = ;j < _count&&temp != ;j++){
if((temp & )== ){ //用1来表示取第i个质数,0表示不去
a *= factor[j]; //分母的乘积
b++; //统计个数
}
temp >>= ;
}
if((b&)==) result -= n/a; //个数为奇数,根据容斥原理,应该减
else result += n/a; //个数为偶数,应该加
}
return result;
}
int main(){
while(~scanf("%d%ld",&m,&k)){ //当没有收到数据的时候是EOF(-1)取反后是0(false)
if(m == ){
printf("%ld\n",k);
continue;
}
if(k == ){
printf("1\n"); //特殊处理,加快速度
continue;
}
ll from = ;
ll end = 1LL<<;
ll result;
init(m);
while(from <= end){ //二分查找
ll mid = (from + end) >> ;
ll c = getCount(mid); //计算个数
if(c > k) end = mid - ;
else if(c < k) from = mid + ;
else{ //这里不可以break,二分找到的第一个不一定是答案
result = mid; //例如数列1 1 1 2 3查找1,第一次找到的1不一定是最左边的
end = mid - ;
}
}
printf("%ld\n",result);
}
return ;
}
poj 2773 Happy 2006 - 二分答案 - 容斥原理的更多相关文章
- POJ 2773 Happy 2006#素数筛选+容斥原理+二分
http://poj.org/problem?id=2773 说实话这道题..一点都不Happy好吗 似乎还可以用欧拉函数来解这道题,但正好刚学了容斥原理和二分,就用这个解法吧. 题解:要求输出[1, ...
- POJ 1064 Cable master (二分答案)
题目链接:http://poj.org/problem?id=1064 有n条绳子,长度分别是Li.问你要是从中切出m条长度相同的绳子,问你这m条绳子每条最长是多少. 二分答案,尤其注意精度问题.我觉 ...
- POJ 3484 Showstopper(二分答案)
[题目链接] http://poj.org/problem?id=3484 [题目大意] 给出n个等差数列的首项末项和公差.求在数列中出现奇数次的数.题目保证至多只有一个数符合要求. [题解] 因为只 ...
- POJ 3579 Median(二分答案+Two pointers)
[题目链接] http://poj.org/problem?id=3579 [题目大意] 给出一个数列,求两两差值绝对值的中位数. [题解] 因为如果直接计算中位数的话,数量过于庞大,难以有效计算, ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ 2440 中山市选2011 全然平方数 二分答案+容斥原理+莫比乌斯反演
题目大意:求第k个无平方因子数是多少(无视原题干.1也是全然平方数那岂不是一个数也送不出去了? 无平方因子数(square-free number),即质因数分解之后全部质因数的次数都为1的数 首先二 ...
- {POJ}{3897}{Maze Stretching}{二分答案+BFS}
题意:给定迷宫,可以更改高度比,问如何使最短路等于输入数据. 思路:由于是单调的,可以用二分答案,然后BFS验证.这里用优先队列,每次压入也要进行检查(dis大小)防止数据过多,A*也可以.好久不写图 ...
- POJ 2391 Ombrophobic Bovines (二分答案+floyd+最大流)
<题目链接> 题目大意: 给定一个有$n$个顶点和$m$条边的无向图,点$i$ 处有$A_i$头牛,点$i$ 处的牛棚能容纳$B_i$头牛,每条边有一个时间花费$t_i$(表示从一个端点走 ...
- POJ 3061 Subsequence【二分答案】||【尺取法】
<题目链接> 题目大意: 给你一段长度为n的整数序列,并且给出一个整数S,问你这段序列中区间之和大于等于S的最短区间长度是多少. 解题分析:本题可以用二分答案做,先求出前缀和,然后枚举区间 ...
随机推荐
- CodeForces - 779D String Game 常规二分
题意:给你两个串,S2是S1 的一个子串(可以不连续).给你一个s1字符下标的一个排列,按照这个数列删数,问你最多删到第几个时S2仍是S1 的一个子串. 题解:二分删掉的数.判定函数很好写和单调性也可 ...
- python3.5 安装python3-tk
https://blog.csdn.net/qq_18293213/article/details/74483516 在python3.5下安装好matplotlib后,准备显示一张图片测试一下,但是 ...
- kubernetes实战(十一):k8s使用openLDAP统一认证
1.基本概念 为了方便管理和集成jenkins,k8s.harbor.jenkins均使用openLDAP统一认证. 2.部署openLDAP 此处将openLDAP部署在k8s上,openLDAP可 ...
- sql执行顺序与性能优化小技巧(一)
关于sql条件匹配对执行效率影响测试 首先,创建一个标量函数create function ff_test() returns int as begin declare @i int=0 while( ...
- URAL 1517 Freedom of Choice (后缀数组 输出两个串最长公共子串)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/whyorwhnt/article/details/34075603 题意:给出两个串的长度(一样长) ...
- 15 jmeter分布式性能测试
背景由于jmeter本身的瓶颈,当需要模拟数以千计的并发用户时,使用单台机器模拟所有的并发用户就有些力不从心,甚至还会引起Java内存溢出的错误.要解决这个问题,可以使用分布式测试,运行多台机器运用所 ...
- Vue.js - 概述
概述 Vue.js(读音 /vjuː/, 类似于 view)是一个构建数据驱动的 web 界面的库.Vue.js 的目标是通过尽可能简单的 API 实现响应的数据绑定和组合的视图组件. Vue.js ...
- layer,一个可以让你想到即可做到的javascript弹窗(层)解决方案
学习网址:http://layer.layui.com/ 下载地址:http://res.layui.com/download/layer-v2.1.zip 我们提到的基础参数主要指调用方法时用到的配 ...
- Scala系统学习(五):Scala访问修辞符
本章将介绍Scala访问修饰符.包,类或对象的成员可以使用私有(private)和受保护(protected)的访问修饰符进行标注,如果不使用这两个关键字的其中一个,那么访问将被视为公开(public ...
- Y2K Accounting Bug(poj2586)
题意: 有一个公司由于某个病毒使公司赢亏数据丢失,但该公司每月的 赢亏是一个定数,要么一个月赢利s,要么一月亏d.现在ACM只知道该公司每五个月有一个赢亏报表,而且每次报表赢利情况都为亏.在一年中这样 ...