卷积神经网络(CNN)由输入层、卷积层、激活函数、池化层、全连接层组成,即INPUT-CONV-RELU-POOL-FC

(1)卷积层:用它来进行特征提取,如下:

输入图像是32*32*3,3是它的深度(即R、G、B),卷积层是一个5*5*3的filter(感受野),这里注意:感受野的深度必须和输入图像的深度相同。通过一个filter与输入图像的卷积可以得到一个28*28*1的特征图,上图是用了两个filter得到了两个特征图;

我们通常会使用多层卷积层来得到更深层次的特征图。如下:

关于卷积的过程图解如下:

输入图像和filter的对应位置元素相乘再求和,最后再加上b,得到特征图。如图中所示,filter w0的第一层深度和输入图像的蓝色方框中对应元素相乘再求和得到0,其他两个深度得到2,0,则有0+2+0+1=3即图中右边特征图的第一个元素3.,卷积过后输入图像的蓝色方框再滑动,stride=2,如下:

如上图,完成卷积,得到一个3*3*1的特征图;在这里还要注意一点,即zero pad项,即为图像加上一个边界,边界元素均为0.(对原输入无影响)一般有

F=3 => zero pad with 1

F=5 => zero pad with 2

F=7=> zero pad with 3,边界宽度是一个经验值,加上zero pad这一项是为了使输入图像和卷积后的特征图具有相同的维度,如:

输入为5*5*3,filter为3*3*3,在zero pad 为1,则加上zero pad后的输入图像为7*7*3,则卷积后的特征图大小为5*5*1((7-3)/1+1),与输入图像一样;

而关于特征图的大小计算方法具体如下:

卷积层还有一个特性就是“权值共享”原则。如下图:

如没有这个原则,则特征图由10个32*32*1的特征图组成,即每个特征图上有1024个神经元,每个神经元对应输入图像上一块5*5*3的区域,即一个神经元和输入图像的这块区域有75个连接,即75个权值参数,则共有75*1024*10=768000个权值参数,这是非常复杂的,因此卷积神经网络引入“权值”共享原则,即一个特征图上每个神经元对应的75个权值参数被每个神经元共享,这样则只需75*10=750个权值参数,而每个特征图的阈值也共享,即需要10个阈值,则总共需要750+10=760个参数。

补充:

(1)对于多通道图像做1*1卷积,其实就是将输入图像的每个通道乘以系数后加在一起,即相当于将原图中本来各个独立的通道“联通”在了一起;

池化层:对输入的特征图进行压缩,一方面使特征图变小,简化网络计算复杂度;一方面进行特征压缩,提取主要特征,如下:

池化操作一般有两种,一种是Avy Pooling,一种是max Pooling,如下:

同样地采用一个2*2的filter,max pooling是在每一个区域中寻找最大值,这里的stride=2,最终在原特征图中提取主要特征得到右图。

(Avy pooling现在不怎么用了(其实就是平均池化层),方法是对每一个2*2的区域元素求和,再除以4,得到主要特征),而一般的filter取2*2,最大取3*3,stride取2,压缩为原来的1/4.

注意:这里的pooling操作是特征图缩小,有可能影响网络的准确度,因此可以通过增加特征图的深度来弥补(这里的深度变为原来的2倍)。

全连接层:连接所有的特征,将输出值送给分类器(如softmax分类器)。

总的一个结构大致如下:

另外:CNN网络中前几层的卷积层参数量占比小,计算量占比大;而后面的全连接层正好相反,大部分CNN网络都具有这个特点。因此我们在进行计算加速优化时,重点放在卷积层;进行参数优化、权值裁剪时,重点放在全连接层。

CNN-卷积层和池化层学习的更多相关文章

  1. 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)

    基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...

  2. tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图

    tensorflow CNN 卷积神经网络中的卷积层和池化层的代码和效果图 因为很多 demo 都比较复杂,专门抽出这两个函数,写的 demo. 更多教程:http://www.tensorflown ...

  3. ubuntu之路——day17.3 简单的CNN和CNN的常用结构池化层

    来看上图的简单CNN: 从39x39x3的原始图像 不填充且步长为1的情况下经过3x3的10个filter卷积后 得到了 37x37x10的数据 不填充且步长为2的情况下经过5x5的20个filter ...

  4. CNN卷积神经网络的卷积层、池化层的输出维度计算公式

    卷积层Conv的输入:高为h.宽为w,卷积核的长宽均为kernel,填充为pad,步长为Stride(长宽可不同,分别计算即可),则卷积层的输出维度为: 其中上开下闭开中括号表示向下取整. MaxPo ...

  5. 【python实现卷积神经网络】池化层实现

    代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride.padding)的具体实现:https ...

  6. 『TensorFlow』卷积层、池化层详解

    一.前向计算和反向传播数学过程讲解

  7. Python3 卷积神经网络卷积层,池化层,全连接层前馈实现

    # -*- coding: utf-8 -*- """ Created on Sun Mar 4 09:21:41 2018 @author: markli " ...

  8. Keras深度神经网络算法模型构建【输入层、卷积层、池化层】

    一.输入层 1.用途 构建深度神经网络输入层,确定输入数据的类型和样式. 2.应用代码 input_data = Input(name='the_input', shape=(1600, 200, 1 ...

  9. 吴裕雄 python 神经网络——TensorFlow训练神经网络:卷积层、池化层样例

    import numpy as np import tensorflow as tf M = np.array([ [[1],[-1],[0]], [[-1],[2],[1]], [[0],[2],[ ...

随机推荐

  1. Codeforces Round #511 (Div. 2)

    Codeforces Round #511 (Div. 2) #include <bits/stdc++.h> using namespace std; int n; int main() ...

  2. CentOS下KVM增加磁盘/磁盘扩容/在线扩容

    一.磁盘镜像操作(适用于raw和qcow2格式) 1.创建镜像 qemu-img create -f qcow2(格式) /kvm/centos1_1.qcow2(路径) 5G(容量) 2.修改镜像容 ...

  3. 如何在socket编程的Tcp连接中实现心跳协议

    from http://blog.csdn.net/nyist327/article/details/39586203 心跳包的发送,通常有两种技术方法1:应用层自己实现的心跳包 由应用程序自己发送心 ...

  4. DbContextScope,A simple and flexible way to manage your Entity Framework DbContext instances,by mehdime

    DbContextScope A simple and flexible way to manage your Entity Framework DbContext instances. DbCont ...

  5. Mustache.js语法

    看了Mustache的github,学学此中的语法,做个笔记 1.简单的变量调换:{{name}} 1 var data = { "name": "Willy" ...

  6. MySQL对数据表进行分组查询

    MySQL对数据表进行分组查询(GROUP BY) GROUP BY关键字可以将查询结果按照某个字段或多个字段进行分组.字段中值相等的为一组.基本的语法格式如下: GROUP BY 属性名 [HAVI ...

  7. SpringMVC和Springboot的区别

    转自站在浪潮之巅的原文SpringMVC和Springboot的区别(网摘) spring boot 我理解就是把 spring spring mvc spring data jpa 等等的一些常用的 ...

  8. 关于UIImageView的显示问题——居中显示或者截取图片的中间部分显示

    我们都知道在ios中,每一个UIImageView都有他的frame大小,但是如果图片的大小和这个frame的大小不符合的时候会怎么样呢?在默认情况,图片会被压缩或者拉伸以填满整个区域. 通过查看UI ...

  9. iOS内存管理 -讲的不错,角度独特

    ios的内存管理,包括对象的所有权与引用计数.自动释放.访问器方法与属性.一些会改变引用计数的特殊情况          ----- 对象所有权(ownership) 与引用计数 (retain co ...

  10. RabbitMQ:基本命令

    rabbitmq的安装.启动和停止 rabbitmq-service.bat install rabbitmq-service.bat start rabbitmq-service.bat stop ...