[Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM
原理请观良心视频:机器学习课程 Expectation Maximisation

Expectation-maximization is a well-founded statistical algorithm to get around this problem by an iterative process.
- First one assumes random components (randomly centered on data points, learned from k-means, or even just normally distributed around the origin) and computes for each point a probability of being generated by each component of the model.
- Then, one tweaks the parameters to maximize the likelihood of the data given those assignments. Repeating this process is guaranteed to always converge to a local optimum.
实战:
X_train
Out[79]:
array([[ 4.3, 3. , 1.1, 0.1],
[ 5.8, 4. , 1.2, 0.2],
[ 5.7, 4.4, 1.5, 0.4],
...,
[ 6.5, 3. , 5.2, 2. ],
[ 6.2, 3.4, 5.4, 2.3],
[ 5.9, 3. , 5.1, 1.8]]) X_train.size
Out[80]: 444 classifier.means_
Out[81]:
array([[ 5.04594595, 3.45135126, 1.46486501, 0.25675684], # 1st 4d Gaussian
[ 5.92023012, 2.75827264, 4.42168189, 1.43882194], # 2nd 4d Gaussian
[ 6.8519452 , 3.09214071, 5.71373857, 2.0934678 ]]) # 3rd 4d Gaussian
classifier.covars_
Out[82]:
array([[ 0.08532076, 0.08532076, 0.08532076, 0.08532076],
[ 0.14443088, 0.14443088, 0.14443088, 0.14443088],
[ 0.1758563 , 0.1758563 , 0.1758563 , 0.1758563 ]])

本有四个变量,如何画在平面图上的呢?以上只取了前两维数据做图。
"""
==================
GMM classification
================== Demonstration of Gaussian mixture models for classification. See :ref:`gmm` for more information on the estimator. Plots predicted labels on both training and held out test data using a
variety of GMM classifiers on the iris dataset. Compares GMMs with spherical, diagonal, full, and tied covariance
matrices in increasing order of performance. Although one would
expect full covariance to perform best in general, it is prone to
overfitting on small datasets and does not generalize well to held out
test data. On the plots, train data is shown as dots, while test data is shown as
crosses. The iris dataset is four-dimensional. Only the first two
dimensions are shown here, and thus some points are separated in other
dimensions.
"""
print(__doc__) # Author: Ron Weiss <ronweiss@gmail.com>, Gael Varoquaux
# License: BSD 3 clause # $Id$ import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as np from sklearn import datasets
from sklearn.cross_validation import StratifiedKFold
from sklearn.externals.six.moves import xrange
from sklearn.mixture import GMM def make_ellipses(gmm, ax):
for n, color in enumerate('rgb'):
v, w = np.linalg.eigh(gmm._get_covars()[n][:2, :2])
u = w[0] / np.linalg.norm(w[0])
angle = np.arctan2(u[1], u[0])
angle = 180 * angle / np.pi # convert to degrees
v *= 9
ell = mpl.patches.Ellipse(gmm.means_[n, :2], v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(ax.bbox)
ell.set_alpha(0.5)
ax.add_artist(ell)
iris = datasets.load_iris()
#数据预处理
# Break up the dataset into non-overlapping training (75%) and testing
# (25%) sets.
# 分层交叉验证,使得交叉验证抽到的样本符合原始样本的比例。
skf = StratifiedKFold(iris.target, n_folds=4)
# Only take the first fold.
train_index, test_index = next(iter(skf))
# next(iter())逐个遍历skf的elem, len(skf) = 4
# 随机获取了四组中的一组数据
X_train = iris.data [train_index]
y_train = iris.target[train_index]
X_test = iris.data [test_index]
y_test = iris.target[test_index]
#GMM初始化
n_classes = len(np.unique(y_train))
# y_train就三种值,代表有仨个Gaussian # Try GMMs using different types of covariances.
# 四种不同的type做GMM,然后存放在dict中
classifiers = dict((covar_type,
GMM(n_components=n_classes, covariance_type=covar_type, init_params='wc', n_iter=20)
)
for covar_type in ['spherical', 'diag', 'tied', 'full']
)
# NB:covar_type的表现往往体现在高斯分布图像的旋转
n_classifiers = len(classifiers) plt.figure(figsize=(3 * n_classifiers / 2, 6))
plt.subplots_adjust(bottom=.01, top=0.95, hspace=.15, wspace=.05,
left=.01, right=.99) for index, (name, classifier) in enumerate(classifiers.items()):
"""
dict_items([('diag', GMM(covariance_type='diag', init_params='wc', min_covar=0.001, n_components=5, n_init=1, n_iter=20, params='wmc', random_state=None, tol=0.001, verbose=0)),
('tied', GMM(covariance_type='tied', init_params='wc', min_covar=0.001, n_components=5, n_init=1, n_iter=20, params='wmc', random_state=None, tol=0.001, verbose=0)),
('full', GMM(covariance_type='full', init_params='wc', min_covar=0.001, n_components=5, n_init=1, n_iter=20, params='wmc', random_state=None, tol=0.001, verbose=0)),
('spherical', GMM(covariance_type='spherical', init_params='wc', min_covar=0.001, n_components=5, n_init=1, n_iter=20, params='wmc', random_state=None, tol=0.001, verbose=0))])
"""
# 数据训练
# Since we have class labels for the training data, we can
# initialize the GMM parameters in a supervised manner.
classifier.means_ = np.array([X_train[y_train == i].mean(axis=0) for i in xrange(n_classes)])
# axis=0 沿着Matrix的‘行’求统计量,NB:每个向量的第一元素求mean,第二个元素求mean ...
# Train the other parameters using the EM algorithm.
classifier.fit(X_train)
# 数据表现
h = plt.subplot(2, n_classifiers / 2, index + 1)
make_ellipses(classifier, h) for n, color in enumerate('rgb'):
data = iris.data[iris.target == n]
plt.scatter(data[:, 0], data[:, 1], 0.8, color=color,
label=iris.target_names[n])
# Plot the test data with crosses
for n, color in enumerate('rgb'):
data = X_test[y_test == n]
plt.plot(data[:, 0], data[:, 1], 'x', color=color) y_train_pred = classifier.predict(X_train)
train_accuracy = np.mean(y_train_pred.ravel() == y_train.ravel()) * 100
plt.text(0.05, 0.9, 'Train accuracy: %.1f' % train_accuracy,
transform=h.transAxes)
test_accuracy = np.mean(y_test_pred.ravel() == y_test.ravel()) * 100
plt.text(0.05, 0.8, 'Test accuracy: %.1f' % test_accuracy,
transform=h.transAxes) plt.xticks(())
plt.yticks(())
plt.title(name) plt.legend(loc='lower right', prop=dict(size=12)) plt.show()
New api: mixture.GMM
"""
=============================================
Density Estimation for a mixture of Gaussians
============================================= Plot the density estimation of a mixture of two Gaussians. Data is
generated from two Gaussians with different centers and covariance
matrices.
""" import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
from sklearn import mixture n_samples = 300 # generate random sample, two components
np.random.seed(0) # generate spherical data centered on (20, 20)
shifted_gaussian = np.random.randn(n_samples, 2) + np.array([20, 20]) # generate zero centered stretched Gaussian data
C = np.array([[0., -0.7], [3.5, .7]])
stretched_gaussian = np.dot(np.random.randn(n_samples, 2), C) # concatenate the two datasets into the final training set
X_train = np.vstack([shifted_gaussian, stretched_gaussian]) # fit a Gaussian Mixture Model with two components
clf = mixture.GMM(n_components=2, covariance_type='full')
clf.fit(X_train) # display predicted scores by the model as a contour plot
x = np.linspace(-20.0, 30.0)
y = np.linspace(-20.0, 40.0)
X, Y = np.meshgrid(x, y)
XX = np.array([X.ravel(), Y.ravel()]).T
Z = -clf.score_samples(XX)[0]
Z = Z.reshape(X.shape) CS = plt.contour(X, Y, Z, norm=LogNorm(vmin=1.0, vmax=1000.0),
levels=np.logspace(0, 3, 10))
CB = plt.colorbar(CS, shrink=0.8, extend='both')
plt.scatter(X_train[:, 0], X_train[:, 1], .8) plt.title('Negative log-likelihood predicted by a GMM')
plt.axis('tight')
plt.show()
如何判定模型中有几个Gaussian,Selecting the number of components in a classical GMM
The BIC criterion can be used to select the number of components in a GMM in an efficient way. In theory, it recovers the true number of components only in the asymptotic regime (i.e. if much data is available).
Note that using a DPGMM avoids the specification of the number of components for a Gaussian mixture model.
(NOTE:DPGMM会放在Dirichlet Process章节中学习)
哪个模型更加的好呢?目前常用有如下方法:
AIC = -2 ln(L) + 2k Akaike information criterion
BIC = -2 ln(L) + ln(n)*k Bayesian information criterion
HQ = -2 ln(L) + ln(ln(n))*k Hannan-quinn criterion
其中L是在该模型下的最大似然,n是数据数量,k是模型的变量个数。
注意这些规则只是刻画了用某个模型之后相对“真实模型”的信息损失【因为不知道真正的模型是什么样子,所以训练得到的所有模型都只是真实模型的一个近似模型】,所以用这些规则不能说明某个模型的精确度,即三个模型A, B, C,在通过这些规则计算后,我们知道B模型是三个模型中最好的,但是不能保证B这个模型就能够很好地刻画数据,因为很有可能这三个模型都是非常糟糕的,B只是烂苹果中的相对好的苹果而已。
这些规则理论上是比较漂亮的,但是实际在模型选择中应用起来还是有些困难的,例如上面我们说了5个变量就有32个变量组合,如果是10个变量呢?2的10次方,我们不可能对所有这些模型进行一一验证AIC, BIC,HQ规则来选择模型,工作量太大。
"""
=================================
Gaussian Mixture Model Selection
================================= This example shows that model selection can be performed with
Gaussian Mixture Models using information-theoretic criteria (BIC).
Model selection concerns both the covariance type
and the number of components in the model.
In that case, AIC also provides the right result (not shown to save time),
but BIC is better suited if the problem is to identify the right model.
Unlike Bayesian procedures, such inferences are prior-free. In that case, the model with 2 components and full covariance
(which corresponds to the true generative model) is selected.
"""
print(__doc__) import itertools import numpy as np
from scipy import linalg
import matplotlib.pyplot as plt
import matplotlib as mpl from sklearn import mixture # Number of samples per component
n_samples = 500 # Generate random sample, two components
np.random.seed(0)
C = np.array([[0., -0.1], [1.7, .4]])
X = np.r_[np.dot(np.random.randn(n_samples, 2), C),
.7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] lowest_bic = np.infty
bic = []
n_components_range = range(1, 7)
cv_types = ['spherical', 'tied', 'diag', 'full']
for cv_type in cv_types:
for n_components in n_components_range:
# Fit a mixture of Gaussians with EM
gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type)
gmm.fit(X)
bic.append(gmm.bic(X))
if bic[-1] < lowest_bic:
lowest_bic = bic[-1]
best_gmm = gmm
# 这里不需要 test set
bic = np.array(bic)
color_iter = itertools.cycle(['k', 'r', 'g', 'b', 'c', 'm', 'y'])
clf = best_gmm
bars = [] # Plot the BIC scores
spl = plt.subplot(2, 1, 1)
for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)):
xpos = np.array(n_components_range) + .2 * (i - 2)
bars.append(plt.bar(xpos, bic[i * len(n_components_range):
(i + 1) * len(n_components_range)],
width=.2, color=color))
plt.xticks(n_components_range)
plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()])
plt.title('BIC score per model')
xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\
.2 * np.floor(bic.argmin() / len(n_components_range))
plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14)
spl.set_xlabel('Number of components')
spl.legend([b[0] for b in bars], cv_types) # Plot the winner
splot = plt.subplot(2, 1, 2)
Y_ = clf.predict(X)
for i, (mean, covar, color) in enumerate(zip(clf.means_, clf.covars_,
color_iter)):
v, w = linalg.eigh(covar)
if not np.any(Y_ == i):
continue
plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component
angle = np.arctan2(w[0][1], w[0][0])
angle = 180 * angle / np.pi # convert to degrees
v *= 4
ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color)
ell.set_clip_box(splot.bbox)
ell.set_alpha(.5)
splot.add_artist(ell) plt.xlim(-10, 10)
plt.ylim(-3, 6)
plt.xticks(())
plt.yticks(())
plt.title('Selected GMM: full model, 2 components')
plt.subplots_adjust(hspace=.35, bottom=.02)
plt.show()
[Scikit-learn] 2.1 Clustering - Gaussian mixture models & EM的更多相关文章
- [OpenCV] Samples 15: Background Subtraction and Gaussian mixture models
不错的草稿.但进一步处理是必然的,也是难点所在. Extended: 固定摄像头,采用Gaussian mixture models对背景建模. OpenCV 中实现了两个版本的高斯混合背景/前景分割 ...
- Gaussian Mixture Models and the EM algorithm汇总
Gaussian Mixture Models and the EM algorithm汇总 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 漫谈 ...
- [Scikit-learn] 2.1 Clustering - Variational Bayesian Gaussian Mixture
最重要的一点是:Bayesian GMM为什么拟合的更好? PRML 这段文字做了解释: Ref: http://freemind.pluskid.org/machine-learning/decid ...
- 漫谈 Clustering (3): Gaussian Mixture Model
上一次我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM ...
- 基于图嵌入的高斯混合变分自编码器的深度聚类(Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedding, DGG)
基于图嵌入的高斯混合变分自编码器的深度聚类 Deep Clustering by Gaussian Mixture Variational Autoencoders with Graph Embedd ...
- [zz] 混合高斯模型 Gaussian Mixture Model
聚类(1)——混合高斯模型 Gaussian Mixture Model http://blog.csdn.net/jwh_bupt/article/details/7663885 聚类系列: 聚类( ...
- Fisher Vector Encoding and Gaussian Mixture Model
一.背景知识 1. Discriminant Learning Algorithms(判别式方法) and Generative Learning Algorithms(生成式方法) 现在常见的模式 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 聚类之高斯混合模型(Gaussian Mixture Model)【转】
k-means应该是原来级别的聚类方法了,这整理下一个使用后验概率准确评测其精度的方法—高斯混合模型. 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussia ...
随机推荐
- RavenDb学习(三)静态索引
在静态索引这块,RavenDb其实的是lucene,所以里面有很多概念,其实都是lucene本身的. .定义静态Indexes documentStore.DatabaseCommands.PutIn ...
- 【jquery】基于 jquery 的翻牌效果 flip
最近做了个类似于塔罗牌翻牌的效果,分享给大家. <!doctype html> <html lang="en"> <head> <meta ...
- windows10删除开始菜单中的xbox、人脉、邮件等应用
1.右键单击PowerShell,选择“以管理员身份运行” 2.输入下面的命令回车,会列出系统中所有已安装应用列表. Get-AppxPackage -AllUsers 从列表中找到你要卸载的应用,并 ...
- 即时通信(IM)和实时通信(RTC)的区别
即时通信(IM=nstant messaging)和实时通信(rtc=Real-time communication)都是一套网络通信系统,其本质都是对信息进行转发.其最大的不同点,是对信息传递的时间 ...
- 百度Ueditor设置图片自动压缩
使用百度Ueditor插入图片的时候,如果图片大于你的编辑框宽度,下面会出现滚动条,如下图: 我们如何设置它的最大宽度为100%呢? 找到ueditor\ueditor.config.js,修改它的i ...
- ubuntu eclipse&JDK
1. 下载jre,eclipse,cdt 其中jre是java运行环境,eclipse需要先装jre,才可能运行,cdt是在eclipse中运行c\c++程序的插件. 1.1 下载jre 网址是:ja ...
- MD5骨骼动画模型加载(一)
前面我们分析了静态模型OBJ格式,桢动画模型MD2,这篇主要分析骨骼动画MD5的一些概念并且实现. 混合桢动画有计算简单,容易实现等优点,但是在需要比较细致的效果时,则需要更多的关键桢,每桢都添加相同 ...
- [转]Android开源测试框架学习
近期因工作需要,分析了一些Android的测试框架,在这也分享下整理完的资料. Android测试大致分三大块: 代码层测试 用户操作模拟,功能测试 安装部署及稳定性测试 代码层测试 对于一般java ...
- K-SVD算法
它与K-mean算法原理上是类似的: K-mean 算法: (之前写过:http://www.cnblogs.com/yinheyi/p/6132362.html) 对于初始化的类别中心,可以看作初化 ...
- tpshop商品属性表关系
TPshop 里面的商品属性, 首先看看TPshop商品详情中的属性介绍, 纯展示给用户看的. 再来tpshop看看商品列表帅选页面的属性,可以根据属性帅选不同的商品 再来看看tpshop后台属性管理 ...