http://acm.nyist.net/JudgeOnline/problem.php?pid=743

复杂度

时间限制:1000 ms  |  内存限制:65535 KB
难度:3
 
描述

for(i=1;i<=n;i++)

for(j=i+1;j<=n;j++)

for(k=j+1;k<=n;k++)

operation;

你知道 operation 共执行了多少次吗;

 
输入
输入 m 和n 表示m为for循环的层数,n为for中的n。
(n,m<=2000),输入以n==0和m==0结束
输出
输出operation执行的次数(输入结果mod 1009)
样例输入
2 3
1 3
2 4
0 0
样例输出
3
3
6
解题思路:

首先m层,每层都有一个值 i、j、k….我们发现这m个值是不重复的,而且是递增序列,于是我们可以想到只需要计算总共有多少中m个数的组合的情况即可,即C(n,m)   —– 从n中任选m个数的种类数。每取出m个数,再递增对应安排在原for循环里,即是一种情况。但是问题又来了,n和m的值最大为2000,因此求C(n,m) 的时候long long 也存不下,而且(n%mod)/(m%mod) != (n/m)%mod;

这就又需要用到另外的一个公式

C(n,m)= C (n-1,m) + C (n-1,m-1);

根据递推公式打表完美解决。

代码:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; #define ll long long
#define N 2001 int dp[N][N]; void GetAns(); int main(){
GetAns();
int m,n;
while(scanf("%d %d",&m,&n),m||n){
if(m>n) puts("");
else printf("%d\n",dp[n][m]);
}
return ;
}
void GetAns(){
int N1=N-;
for(int i=;i<=N1;i++) dp[i][]=,dp[i][i]=;
for(int i=;i<=N1;i++){
for(int j=i-;j>;j--){
dp[i][j]=(dp[i-][j]+dp[i-][j-])%;
}
}
}

nyoj743-复杂度 【排列组合】的更多相关文章

  1. hdu1521 排列组合(指数型母函数)

    题意: 有n种物品,并且知道每种物品的数量ki.要求从中选出m件物品的排数.         (全题文末) 知识点: 普通母函数 指数型母函数:(用来求解多重集的排列问题) n个元素,其中a1,a2, ...

  2. UVa Problem 10132 File Fragmentation (文件还原) 排列组合+暴力

    题目说每个相同文件(01串)都被撕裂成两部分,要求拼凑成原来的样子,如果有多种可能输出一种. 我标题写着排列组合,其实不是什么高深的数学题,只要把最长的那几个和最短的那几个凑一起,然后去用其他几个验证 ...

  3. 【BZOJ】2111: [ZJOI2010]Perm 排列计数 计数DP+排列组合+lucas

    [题目]BZOJ 2111 [题意]求有多少1~n的排列,满足\(A_i>A_{\frac{i}{2}}\),输出对p取模的结果.\(n \leq 10^6,p \leq 10^9\),p是素数 ...

  4. 【专题】计数问题(排列组合,容斥原理,Prufer序列)

    [容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...

  5. 【COGS】2287:[HZOI 2015]疯狂的机器人 FFT+卡特兰数+排列组合

    [题意][COGS 2287][HZOI 2015]疯狂的机器人 [算法]FFT+卡特兰数+排列组合 [题解]先考虑一维的情况,支持+1和-1,前缀和不能为负数,就是卡特兰数的形式. 设C(n)表示第 ...

  6. 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT

    [题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...

  7. 【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值

    [题意]n位同学(其中一位是B神),m门必修课,每门必修课的分数是[1,Ui].B神碾压了k位同学(所有课分数<=B神),且第x门课有rx-1位同学的分数高于B神,求满足条件的分数情况数.当有一 ...

  8. 【CodeForces】914 H. Ember and Storm's Tree Game 动态规划+排列组合

    [题目]H. Ember and Storm's Tree Game [题意]Zsnuoの博客 [算法]动态规划+排列组合 [题解]题目本身其实并不难,但是大量干扰因素让题目显得很神秘. 参考:Zsn ...

  9. 【CodeForces】889 C. Maximum Element 排列组合+动态规划

    [题目]C. Maximum Element [题意]给定n和k,定义一个排列是好的当且仅当存在一个位置i,满足对于所有的j=[1,i-1]&&[i+1,i+k]有a[i]>a[ ...

  10. 【BZOJ】4555: [Tjoi2016&Heoi2016]求和 排列组合+多项式求逆 或 斯特林数+NTT

    [题意]给定n,求Σi=0~nΣj=1~i s(i,j)*2^j*j!,n<=10^5. [算法]生成函数+排列组合+多项式求逆 [题解]参考: [BZOJ4555][Tjoi2016& ...

随机推荐

  1. 关于String str =new String("abc")和 String str = "abc"的比较--转

    原文地址:https://www.cnblogs.com/OnlyCT/p/5433410.html String是一个非常常用的类,应该深入的去了解String 如: String str =new ...

  2. unittest框架断言方法

    assertEqual(a, b)          判断a==b assertNotEqual(a, b)     判断a!=b assertTrue(x)                bool( ...

  3. Jmeter 问题集

    1.配置分布式,调度机(master) 看不到 执行机(slave). 原因: slave是放在一个交换机下面,然后在这个交换机下面又接了个路由器,control连的这个路由器 解决: CONTROL ...

  4. 杂项:Juice UI

    ylbtech-杂项:Juice UI Juice UI是开源的 WebForms 控件集,是一个功能强大的框架,它可以给ASP .NET开发人员带来丰富的.可以作为易于使用的控件的jQuery UI ...

  5. httpclient 用户名密码认证实例

    import java.io.IOException; import java.util.ArrayList; import java.util.List; import org.apache.com ...

  6. MySQL concat用法举例

    concat配合information_schema的应用 1    concat的一般用法主要是用于拼接 示例: 执行语句 SELECT CONCAT('M','y','S','Q','L') 可以 ...

  7. [UE4]UE4中的常见类

    一.Actor:可以放在世界中物体 二.Pawn:可以接受Controller输入的Actor 三.Character:是一个可以行走.跑.跳等行为的Pawn 四.Controller:没有物理表现的 ...

  8. EC20 MODULE serial com log in passwd

    ec20 module would print debug info via debug uart, and you can log in by user root, the passwd is qu ...

  9. 图片尺寸批量resize的matlab并行代码

    在caffe ImageNet例子中有对图片进行resize的部分,文中使用的是linux shell脚本命令: for name in /path/to/imagenet/val/*.JPEG; d ...

  10. JNDI的学习与使用

    JNDI(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API.命名服务将名称和对象联系起来,使得我们可以用 ...