51nod 1103 N的倍数
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
无论连续不连续,设si为前i个数的和,那么如果si%N==0,那么前i个数就满足了条件。
如果不存在si%N==0,那么从s1到sN这N个数对N取余,范围肯定是0-N-1,但是前面已经说了没有=0的情况,所以范围相当于缩减成1 - N-1
那么也就相当于N个余数放到N-1个框中,肯定有两个在一起。也就是存在i!=j,(sj-si)%N==0.
也就是说,不存在No solution的情况。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+; int s[maxn],sum[maxn];
int pos[maxn];
int main()
{
int n;scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&s[i]);
for(int i=;i<=n;i++) sum[i] = (sum[i-] + s[i])%n;
//for(int i=1;i<=n;i++) printf("%d ",sum[i]);
int ans=;
for(int i=;i<=n;i++)
if(sum[i] == )
{
ans=i;break;
}
if(sum[ans] ==)//这个是如果前n项和==0了 就找到和是N的倍数了
{
printf("%d\n",ans);
for(int i=;i<=ans;i++)
printf("%d\n",s[i]);
return ;
}//数据有点儿水啊 这里直接就过了 for(int i=;i<=n;i++)
{
//因为上面已经统计过了 和为0的情况
//这里面就不可能出现和为0的情况了 只会出现两个数的和相同的情况
if(pos[sum[i]])//如果之前存在了
{
printf("%d\n",i - pos[sum[i]]);// 比如sum[2] =2 ,sum[7] =2
//那么就有从3到7 5个数
ans= pos[sum[i]]+;//ans 刚开始就等于3
while(ans<=i)
{
printf("%d\n",s[ans]);
}
return ;
} pos[sum[i]] = i; }
}
51nod 1103 N的倍数的更多相关文章
- 51nod 1103 N的倍数(抽屉原理)
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...
- 51nod 1103 N的倍数 (鸽巢原理)
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...
- 51nod 1103 N的倍数 思路:抽屉原理+前缀和
题目: 这是一道很神奇的题目,做法非常巧妙.巧妙在题目要求n个数字,而且正好要求和为n的倍数. 思路:用sum[i]表示前i个数字的和%n.得到sum[ 1-N ]共N个数字. N个数字对N取模,每个 ...
- AC日记——N的倍数 51nod 1103
1103 N的倍数 思路: 先计算出前缀和: 然后都%n: 因为有n个数,所以如果没有sum[i]%n==0的化,一定有两个取模后的sum相等: 输出两个sum中间的数就好: 来,上代码: #incl ...
- 51nod 1103:N的倍数 抽屉原理
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...
- 1103 N的倍数
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得 ...
- 51nod 1103【鸽巢原理】
思路: 这道题嘛有些弯还是要转的,比如你说让你搞n的倍数,你别老老实实照她的意思去啊,倍数可以除法,取膜 . 因为n个数我们可以求前缀和然后取膜,对n取膜的话有0-n-1种情况,所以方案一定是有的,说 ...
- 51nod——T1103 N的倍数
题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. ...
- 51nod-1103-抽屉原理
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得 ...
随机推荐
- java获取系统当前服务器IP地址
public String getServiceIp(){ InetAddress address; String myIp; try { address = InetAddress.getLocal ...
- qt——c++环境下qt编程,类的声明与构造
在c++中创建项目时,会生成以项目名字命名的QMainWindow,以及相应的头文件和CPP文件,作为主要窗口: 在项目中继续生成qt类时,比如类的名称是test,会自动生成一个test.h的头文件, ...
- list的方法、操作
序号 分类 关键字 / 函数 / 方法 说明 1 增加 列表.insert(索引, 数据) 在指定位置插入数据 列表.append(数据) 在末尾追加数据 列表.extend(列表2) ...
- Java-idea-生成for循环
itar 生成array for代码块 for (int i = 0; i < array.length; i++) { = array[i]; } itco 生成Collection迭代 fo ...
- Unity 补充安装
当需要下载 安装Unity之时没勾选的一些组件时, 1.去Unity官网点开Unity旧版本 2.找到你的Unity版本,然后只要下载Unity安装程序 3.点开安装程序,去掉已安装组件的勾选,勾选你 ...
- 实习培训——Servlet(7)
实习培训——Servlet(7) 1 Servlet 异常处理 当一个 Servlet 抛出一个异常时,Web 容器在使用了 exception-type 元素的 web.xml 中搜索与抛出异常类 ...
- R中apply等函数用法[转载]
转自:https://www.cnblogs.com/nanhao/p/6674063.html 1.apply函数——对矩阵 功能是:Retruns a vector or array or lis ...
- html08
1.JQuery 是一个js框架一堆的 js文件 -形成 > 包 - 形成> 工具 - 形成> ->库 -> 框架 是一个轻量级的库 封装了js原生里js css dom ...
- PhoneGap+Cordova+SenchaTouch-01-环境搭建
转http://my.oschina.net/zhongwenhao/blog/369465 环境搭建基于 windows ,mac系统可以借鉴 1.安装NodeJS 和ruby http://no ...
- EditPlus 4.3.2499 中文版已经发布(11月21日更新)
新的版本修复了如下问题: 文本库的日期快捷方式“^@”失效. 列选模式下“减少缩进量”命令无法执行. 在某些情况下突出显示匹配括号导致程序崩溃.(这个问题是我发现的,电邮告诉作者后,一天之内就修复了) ...