51nod 1103 N的倍数
第1行:1个数N,N为数组的长度,同时也是要求的倍数。(2 <= N <= 50000)
第2 - N + 1行:数组A的元素。(0 < A[i] <= 10^9)
如果没有符合条件的组合,输出No Solution。
第1行:1个数S表示你所选择的数的数量。
第2 - S + 1行:每行1个数,对应你所选择的数。
无论连续不连续,设si为前i个数的和,那么如果si%N==0,那么前i个数就满足了条件。
如果不存在si%N==0,那么从s1到sN这N个数对N取余,范围肯定是0-N-1,但是前面已经说了没有=0的情况,所以范围相当于缩减成1 - N-1
那么也就相当于N个余数放到N-1个框中,肯定有两个在一起。也就是存在i!=j,(sj-si)%N==0.
也就是说,不存在No solution的情况。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+; int s[maxn],sum[maxn];
int pos[maxn];
int main()
{
int n;scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&s[i]);
for(int i=;i<=n;i++) sum[i] = (sum[i-] + s[i])%n;
//for(int i=1;i<=n;i++) printf("%d ",sum[i]);
int ans=;
for(int i=;i<=n;i++)
if(sum[i] == )
{
ans=i;break;
}
if(sum[ans] ==)//这个是如果前n项和==0了 就找到和是N的倍数了
{
printf("%d\n",ans);
for(int i=;i<=ans;i++)
printf("%d\n",s[i]);
return ;
}//数据有点儿水啊 这里直接就过了 for(int i=;i<=n;i++)
{
//因为上面已经统计过了 和为0的情况
//这里面就不可能出现和为0的情况了 只会出现两个数的和相同的情况
if(pos[sum[i]])//如果之前存在了
{
printf("%d\n",i - pos[sum[i]]);// 比如sum[2] =2 ,sum[7] =2
//那么就有从3到7 5个数
ans= pos[sum[i]]+;//ans 刚开始就等于3
while(ans<=i)
{
printf("%d\n",s[ans]);
}
return ;
} pos[sum[i]] = i; }
}
51nod 1103 N的倍数的更多相关文章
- 51nod 1103 N的倍数(抽屉原理)
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...
- 51nod 1103 N的倍数 (鸽巢原理)
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...
- 51nod 1103 N的倍数 思路:抽屉原理+前缀和
题目: 这是一道很神奇的题目,做法非常巧妙.巧妙在题目要求n个数字,而且正好要求和为n的倍数. 思路:用sum[i]表示前i个数字的和%n.得到sum[ 1-N ]共N个数字. N个数字对N取模,每个 ...
- AC日记——N的倍数 51nod 1103
1103 N的倍数 思路: 先计算出前缀和: 然后都%n: 因为有n个数,所以如果没有sum[i]%n==0的化,一定有两个取模后的sum相等: 输出两个sum中间的数就好: 来,上代码: #incl ...
- 51nod 1103:N的倍数 抽屉原理
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得这 ...
- 1103 N的倍数
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得 ...
- 51nod 1103【鸽巢原理】
思路: 这道题嘛有些弯还是要转的,比如你说让你搞n的倍数,你别老老实实照她的意思去啊,倍数可以除法,取膜 . 因为n个数我们可以求前缀和然后取膜,对n取膜的话有0-n-1种情况,所以方案一定是有的,说 ...
- 51nod——T1103 N的倍数
题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍数. ...
- 51nod-1103-抽屉原理
1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 一个长度为N的数组A,从A中选出若干个数,使得 ...
随机推荐
- 通过phantomjs 进行页面截图
本文章参考了使用phantomjs操作DOM并对页面进行截图需要注意的几个问题 及phantomjs使用说明 这两篇文章,初次接触phantomjs的童鞋可以去看下这两篇原文 在学习中可以看下 pha ...
- eclipse导出doc帮助文档字符编码设置
- 005-redis-命令-无序集合,有序集合
Redis 无序集合命令 下表列出了 Redis 集合基本命令: 序号 命令及描述 1 SADD key member1 [member2] 向集合添加一个或多个成员 2 SCARD key 获取集合 ...
- KMP(http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2772)
#include <stdio.h>#include <string.h>#include <stdlib.h>char a[1000001],b[1000001] ...
- 阿里云安装docker 指定版本
sh docker-install.sh 1.12.6 #ubuntu16.4 测试通过 #!/bin/sh set -e # # This script is meant for quick &am ...
- 对比jQuery和AngularJS的不同思维模式
jQuery是dom驱动,AngularJS是数据驱动,这里有一篇文章阐述的非常好,建议看看 本文来自StackOverFlow上How do I “think in AngularJS” if I ...
- python安装HTMLTestRunner
== https://pypi.org/project/html-testRunner/#files 下载 放在这路径下 cmd中进行安装
- 案例:使用scan IP无法连接数据库
环境:Oracle RAC(11.2.0.3) 现象:通过scanIP连接数据库报错ORA-12514: ORA-12514: TNS:listener does not currently know ...
- win10环境下MySql(5.7.21版本)安装过程
windows10上安装mysql(详细步骤) 2016年09月06日 08:09:34 阅读数:60405 环境:windwos 10(1511) 64bit.mysql 5.7.14 时间:201 ...
- js随机点名系统
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...